991 resultados para Climatic Change
Resumo:
A sustainable water resources management depends on sound information about the impacts of climate change. This information is, however, not easily derived because natural runoff variability interferes with the climate change signal. This study presents a procedure that leads to robust estimates of magnitude and Time Of Emergence (TOE) of climate-induced hydrological change that also account for the natural variability contained in the time series. Firstly, natural variability of 189 mesoscale catchments in Switzerland is sampled for 10 ENSEMBLES scenarios for the control (1984–2005) and two scenario periods (near future: 2025–2046, far future: 2074–2095) applying a bootstrap procedure. Then, the sampling distributions of mean monthly runoff are tested for significant differences with the Wilcoxon-Mann–Whitney test and for effect size with Cliff’s delta d. Finally, the TOE of a climate change induced hydrological change is determined when at least eight out of the ten hydrological projections significantly differ from natural variability. The results show that the TOE occurs in the near future period except for high-elevated catchments in late summer. The significant hydrological projections in the near future correspond, however, to only minor runoff changes. In the far future, hydrological change is statistically significant and runoff changes are substantial. Temperature change is the most important factor determining hydrological change in this mountainous region. Therefore, hydrological change depends strongly on a catchment’s mean elevation. Considering that the hydrological changes are predicted to be robust in the near future highlights the importance of accounting for these changes in water resources planning.
Resumo:
Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth’s recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe.
Resumo:
Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0–20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.
Resumo:
Eight synchronous pre-Roman cold phases were found at 9600–9200, 8600–8150, 7550–6900, 6600– 6200, 5350–4900, 4600–4400, 3500–3200 and 2600–2350 radiocarbon years BP by reconstructing past climate at two sites on the Swiss Plateau and at timberline in the Alps. The cooling events during the early-and mid-Holocene represent temperature values similar to today, and apparently the onset of cooling events represents a deviation from today's mean annual temperature of about 1°C and is triggered at a 1000-year periodicity. At Wallisellen-Langachermoos (440 m), a former oligotrophic lake near Zürich, the correlation between sum mertime lake levels and the seed production of the amphi-Atlantic aquatic plantNajas flexilis was used to reconstruct lake levels over a 3000-year period during the first part of the Holocene. At Lake Seedorf on the western Swiss Plateau (609 m) the sedimentological, palynological and macrofossil record revealed fluctuations of lake levels for the complete Holocene. From Lago Basso in the southern Alps (2250 m, Val San Giacomo near Splügen Pass, Northern Italy) the terrestrial plant macrofossils – especiallyPinus cembra andLarix – allowed the reconstruction of timberline fluctuations controlled by climate. A similar climatic pattern was found at Gouillé Rion pond in the central Swiss Alps (2343 m, Val d'Hérémence) with plant macrofossils and pollen concentrations and percentages. We postulate that these climatic events are detectable throughout central Europe by independent methods in combination with precise AMS-radiocarbon datings on terrestrial plant remains. Our data fit other proxy records of regional climatic change, such as cool intervals from Greenland ice cores, glacier movements in the Swiss and Austrian Alps, and dendro-densitometry on subfossil wood, as well as the palaeoclimatic data from the Jura Mountains of France obtained by sedimentological analyses. Thus our data indicate that the Northern Hemisphere climate was less stable during the Holocene than previously believed.
Resumo:
Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larbc decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereas in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equally might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of ·the periods of low timberline can be correlated by radiocarbon dating with climatic changes in the Alps as indicated by glacier ad vances in combination with palynological records, solifluction, and dendrocli matical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluc tuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscil lation) in the Alps is made with paleoecological data from North America and Scandinavia and a climatic signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).
Resumo:
Qualitative and quantitative changes in fossil flora and fauna have been used in many studies to infer climatic change. Here we ask a different question: how do flora and fauna respond to climatic changes such as rapid warming or cooling? As an independent proxy for paleotemperature we take the ratio of oxygen isotopes in biogenically precipitated lake marl and in ostracod shells. This introductory paper describes the project design and the five sites on an altitudinal transect from 600 m to about 2300 m asl in the western Swiss Alps. As cases of climatic cooling and warming we use the beginning and end of the Younger Dryas as major changes, and the Gerzensee and Preboreal oscillations as minor changes. At the two sites of Gerzensee and Leysin these changes are recorded in stable-isotope ratios, and there the time scales can be derived by correlations to the GRIP ice core (Schwander et al., 2000 and von Grafenstein et al., 2000). Biotic responses to climate changes are treated in individual papers using pollen (Wick, 2000), plant macrofossils (Tobolski and Ammann, 2000), and remains of chironomids (Brooks, 2000), beetles and other insects (Lemdahl, 2000), and chydorid Cladocera (Hofmann, 2000). They are followed by a synthesis focusing on quantification of biotic responses (Ammann et al., 2000). In addition, a reconstruction of summer temperatures for the Allerød and the Younger Dryas at Gerzensee is provided by Lotter et al. (2000).
Resumo:
To assess the presence or absence of lags in biotic responses to rapid climatic changes, we: (1) assume that the δ18O in biogenically precipitated carbonates record global or hemispheric climatic change at the beginning and at the end of the Younger Dryas without any lag at our two study sites of Gerzensee and Leysin, Switzerland; (2) derive a time scale by correlating the δ18O record from these two sites with the δ18O record of the GRIP ice core; (3) measure δ18O records in ostracods and molluscs to check the record in the bulk samples and to detect possible hydrological changes; (4) analyse at Gerzensee and Leysin as well as at two additional sites (that lack carbonates and hence a δ18O record) pollen, plant macrofossils, chironomids, beetles and other insects, and Cladocera; (5) estimate our sampling resolution using the GRIP time scale for the isotope stratigraphies and the biostratigraphies; and (6) summarise the major patterns of compositional change in the biostratigraphies by principal component analysis or correspondence analysis. We conclude that, at the major climatic shifts at the beginning and end of the Younger Dryas, hardly any biotic lags occur (within the sampling resolution of 8–30 years) and that upland vegetation responded as fast as aquatic invertebrates. We suggest that the minor climatic changes associated with the Gerzensee and Preboreal oscillations were weakly recorded in the biostratigraphies at the lowland site, but were more distinct at higher altitudes. Individualistic responses of plant and animal species to climatic change may reflect processes in individuals (e.g. productivity and phenology), in populations (e.g. population dynamics), in spatial distributions (e.g. migrations), and in ecosystems (e.g. trophic state). We suggest that biotic responses may be telescoped together into relatively short periods (50 to 150 years), perhaps disrupting functional interactions among species and thus destabilising ecosystems.
Resumo:
As can been seen from the U.S.'s non-ratification of the Kyoto Protocol, together with the negotiations toward the post-Kyoto Protocol framework, the U.S. and China have been quarrelling over their responsibilities and have contradicted one another over the introduction of compulsory domestic greenhouse gases emission reduction targets. Therefore, for a long time, it has been argued that the controversy between the two countries has hindered the process of forging an international agreement to deal with climate change. On the other hand, Sino-U.S. bilateral cooperation on climate change has significantly increased in recent years in summit talks and their Strategic & Economic Dialogue (S&ED), especially after the 15th Conference of Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC) in Copenhagen, one of whose aims was to facilitate positive negotiations for the post-Kyoto Protocol agreement. Analyzing this in the light of recent developments, we find that the U.S. and China have tended to address climate change and related issues from a pluralistic viewpoint and approach, by regarding the achievement of bilateral cooperation and global agreements as their common strategic objective.
Resumo:
There is evidence that the climate changes and that now, the change is influenced and accelerated by the CO2 augmentation in atmosphere due to combustion by humans. Such ?Climate change? is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most countries and international organisms UNO (e.g. Rio de Janeiro 1992), OECD, EC, etc . . . the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. The Protocol of Kyoto 1997 set international efforts about CO2 emissions, but it was partial and not followed e.g. by USA and China . . . , and in Durban 2011 the ineffectiveness of humanity on such global real challenges was set as evident. Among all that, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs, and the authors propose to enter in that frame for study. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model must help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, which will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly in especially vulnerable areas to the climatic change, considering in them all the intervening factors. The models will consider criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion) and environmental, at the present moment and the future. The intention is to obtain tools for aiding to get a realistic position for these challenges, which are an important part of the future problems of humanity in next decades.
Resumo:
The effects of climate change will be felt by most farmers in Europe over the next decades. This study provides consistent results of the impact of climate change on arable agriculture in Europe by using high resolution climate data, socio-economic data, and impact assessment models, including farmer adaptation. All scenarios are consistent with the spatial distribution of effects, exacerbating regional disparities and current vulnerability to climate. Since the results assume no restrictions on the use of water for irrigation or on the application of agrochemicals, they may be considered optimistic from the production point of view and somewhat pessimistic from the environmental point of view. The results provide an estimate of the regional economic impact of climate change, as well as insights into the importance of mitigation and adaptation policies.
Resumo:
Climate change is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most of the countries and international organisms UNO, OECD, EC, etc … the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. Nevertheless, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model should help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, that will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly, in vulnerable areas to the climatic change, considering in them all the intervening factors. The models will take into consideration criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion), sanitary and environmental, at the present moment and the future.
Resumo:
Pacing of the marine carbon cycle by orbital forcing during the Pliocene and Pleistocene Ice Ages [past 2.5 million years (Myr)] is well known. As older deep-sea sediment records are being studied at greater temporal resolution, it is becoming clear that similar fluctuations in the marine carbon system have occurred throughout the late Mesozoic and Tertiary, despite the absence of large continental ice sheets over much of this time. Variations in both the organic and the calcium carbonate components of the marine carbon system seem to have varied cyclically in response to climate forcing, and carbon and carbonate time series appear to accurately characterize the frequency spectrum of ancient climatic change. For the past 35 Myr, much of the variance in carbonate content carries the “polar” signal of obliquity [41,000 years (41 kyr)] forcing. Over the past 125 Myr, there is evidence from marine sediments of the continued role of precessional (≈21 kyr) climatic cycles. Repeat patterns of sedimentation at about 100, 400, and 2,400 kyr, the modulation periods of precession, persistently enter into marine carbon cycle records as well. These patterns suggest a nonlinear response of climate and/or the sedimentation of organic carbon and carbonates to precessional orbital perturbations. Nonlinear responses of the carbon system may help to amplify relatively weak orbital insolation anomalies into more significant climatic perturbations through positive feedback effects. Nonlinearities in the carbon cycle may have transformed orbital-climatic cycles into long-wavelength features on time scales comparable to the residence times of carbon and nutrient elements in the ocean.
Resumo:
The magnetic properties of a sediment core from a high altitude lake in the Swiss Alps were compared with palynological and geochemical data to link climatic and mineral magnetic variations. According to pollen data, the sediments extend from the present to the Younger Dryas, i.e., they cover more than 10,000 years of environmental change in the Alps. The major change in magnetic properties corresponds to the climatic warming of the early Holocene. High-coercivity magnetic minerals that characterize the Late Glacial period almost disappeared during the Holocene and the concentration of ferrimagnetic minerals increased sharply. The contribution of superparamagnetic grains also decreased in the Holocene sediments. Similar variations in {SP} content and coercivity, of smaller magnitude, are found in the Holocene and are interpreted to represent minor climatic variations. Comparison with the historical record of the last 1000 years confirms this interpretation. The magnetic mineralogy, the superparamagnetic contents, and the {IRM} intensity in the coarse-grained, Late Glacial sediments are similar to those measured in the catchment bedrock. This indicates a detrital origin. The different properties and the higher concentration of magnetic minerals in the Holocene sediments are due to authigenic phases. Magnetic properties provide a high resolution record of climatic change. They are sensitive even to small variations that are not recorded in the pollen or {LOI} data. Magnetic parameters show fine-scale variation and constitute a valuable supplement to conventional climatic indicators.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of 'teleconnection' between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20-10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated C-14 ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This research investigates the contribution that Geographic Information Systems (GIS) can make to the land suitability process used to determine the effects of a climate change scenario. The research is intended to redress the severe under representation of Developing countries within the literature examining the impacts of climatic change upon crop productivity. The methodology adopts some of the Intergovernmental Panel on Climate Change (IPCC) estimates for regional climate variations, based upon General Circulation Model predictions (GCMs) and applies them to a baseline climate for Bangladesh. Utilising the United Nations Food & Agricultural Organisation's Agro-ecological Zones land suitability methodology and crop yield model, the effects of the scenario upon agricultural productivity on 14 crops are determined. A Geographic Information System (IDRISI) is adopted in order to facilitate the methodology, in conjunction with a specially designed spreadsheet, used to determine the yield and suitability rating for each crop. A simple optimisation routine using the GIS is incorporated to provide an indication of the 'maximum theoretical' yield available to the country, should the most calorifically significant crops be cultivated on each land unit both before and after the climate change scenario. This routine will provide an estimate of the theoretical population supporting capacity of the country, both now and in the future, to assist with planning strategies and research. The research evaluates the utility of this alternative GIS based methodology for the land evaluation process and determines the relative changes in crop yields that may result from changes in temperature, photosynthesis and flooding hazard frequency. In summary, the combination of a GIS and a spreadsheet was successful, the yield prediction model indicates that the application of the climate change scenario will have a deleterious effect upon the yields of the study crops. Any yield reductions will have severe implications for agricultural practices. The optimisation routine suggests that the 'theoretical maximum' population supporting capacity is well in excess of current and future population figures. If this agricultural potential could be realised however, it may provide some amelioration from the effects of climate change.