996 resultados para Climate signal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three prominent quasi-global patterns of variability and change are observed using the Met Office's sea surface temperature (SST) analysis and almost independent night marine air temperature analysis. The first is a global warming signal that is very highly correlated with global mean SST. The second is a decadal to multidecadal fluctuation with some geographical similarity to the El Niño–Southern Oscillation (ENSO). It is associated with the Pacific Decadal Oscillation (PDO), and its Pacific-wide manifestation has been termed the Interdecadal Pacific Oscillation (IPO). We present model investigations of the relationship between the IPO and ENSO. The third mode is an interhemispheric variation on multidecadal timescales which, in view of climate model experiments, is likely to be at least partly due to natural variations in the thermohaline circulation. Observed climatic impacts of this mode also appear in model simulations. Smaller-scale, regional atmospheric phenomena also affect climate on decadal to interdecadal timescales. We concentrate on one such mode, the winter North Atlantic Oscillation (NAO). This shows strong decadal to interdecadal variability and a correspondingly strong influence on surface climate variability which is largely additional to the effects of recent regional anthropogenic climate change. The winter NAO is likely influenced by both SST forcing and stratospheric variability. A full understanding of decadal changes in the NAO and European winter climate may require a detailed representation of the stratosphere that is hitherto missing in the major climate models used to study climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summer rainfall over China has experienced substantial variability on longer time scales during the last century, and the question remains whether this is due to natural, internal variability or is part of the emerging signal of anthropogenic climate change. Using the best available observations over China, the decadal variability and recent trends in summer rainfall are investigated with the emphasis on changes in the seasonal evolution and on the temporal characteristics of daily rainfall. The possible relationships with global warming are reassessed. Substantial decadal variability in summer rainfall has been confirmed during the period 1958–2008; this is not unique to this period but is also seen in the earlier decades of the twentieth century. Two dominant patterns of decadal variability have been identified that contribute substantially to the recent trend of southern flooding and northern drought. Natural decadal variability appears to dominate in general but in the cases of rainfall intensity and the frequency of rainfall days, particularly light rain days, then the dominant EOFs have a rather different character, being of one sign over most of China, and having principal components (PCs) that appear more trendlike. The increasing intensity of rainfall throughout China and the decrease in light rainfall days, particularly in the north, could at least partially be of anthropogenic origin, both global and regional, linked to increased greenhouse gases and increased aerosols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmospheric response to the evolution of the global sea surface temperatures from 1979 to 1992 is studied using the Max-Planck-Institut 19 level atmospheric general circulation model, ECHAM3 at T 42 resolution. Five separate 14-year integrations are performed and results are presented for each individual realization and for the ensemble-averaged response. The results are compared to a 30-year control integration using a climate monthly mean state of the sea surface temperatures and to analysis data. It is found that the ECHAM3 model, by and large, does reproduce the observed response pattern to El Nin˜o and La Nin˜a. During the El Nin˜ o events, the subtropical jet streams in both hemispheres are intensified and displaced equatorward, and there is a tendency towards weak upper easterlies over the equator. The Southern Oscillation is a very stable feature of the integrations and is accurately reproduced in all experiments. The inter-annual variability at middle- and high-latitudes, on the other hand, is strongly dominated by chaotic dynamics, and the tropical SST forcing only modulates the atmospheric circulation. The potential predictability of the model is investigated for six different regions. Signal to noise ratio is large in most parts of the tropical belt, of medium strength in the western hemisphere and generally small over the European area. The ENSO signal is most pronounced during the boreal spring. A particularly strong signal in the precipitation field in the extratropics during spring can be found over the southern United States. Western Canada is normally warmer during the warm ENSO phase, while northern Europe is warmer than normal during the ENSO cold phase. The reason is advection of warm air due to a more intense Pacific low than normal during the warm ENSO phase and a more intense Icelandic low than normal during the cold ENSO phase, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fingerprint method for detecting anthropogenic climate change is applied to new simulations with a coupled ocean-atmosphere general circulation model (CGCM) forced by increasing concentrations of greenhouse gases and aerosols covering the years 1880 to 2050. In addition to the anthropogenic climate change signal, the space-time structure of the natural climate variability for near-surface temperatures is estimated from instrumental data over the last 134 years and two 1000 year simulations with CGCMs. The estimates are compared with paleoclimate data over 570 years. The space-time information on both the signal and the noise is used to maximize the signal-to-noise ratio of a detection variable obtained by applying an optimal filter (fingerprint) to the observed data. The inclusion of aerosols slows the predicted future warming. The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5%. However, this number is dependent on the estimated natural variability level, which is still subject to some uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the frequency and intensity of cyclones and associated windstorms affecting the Medi-terranean region simulated under enhanced Greenhouse Gas forcing conditions are investigated. The analysis is based on 7 climate model integrations performed with two coupled global models (ECHAM5 MPIOM and INGV CMCC), comparing the end of the twentieth century and at least the first half of the twenty-first century. As one of the models has a considerably enhanced resolution of the atmosphere and the ocean, it is also investigated whether the climate change signals are influenced by the model resolution. While the higher resolved simulation is closer to reanalysis climatology, both in terms of cyclones and windstorm distributions, there is no evidence for an influence of the resolution on the sign of the climate change signal. All model simulations show a reduction in the total number of cyclones crossing the Mediterranean region under climate change conditions. Exceptions are Morocco and the Levant region, where the models predict an increase in the number of cyclones. The reduction is especially strong for intense cyclones in terms of their Laplacian of pressure. The influence of the simulated positive shift in the NAO Index on the cyclone decrease is restricted to the Western Mediterranean region, where it explains 10–50 % of the simulated trend, depending on the individual simulation. With respect to windstorms, decreases are simulated over most of the Mediterranean basin. This overall reduction is due to a decrease in the number of events associated with local cyclones, while the number of events associated with cyclones outside of the Mediterranean region slightly increases. These systems are, however, less intense in terms of their integrated severity over the Mediterranean area, as they mostly affect the fringes of the region. In spite of the general reduction in total numbers, several cyclones and windstorms of intensity unknown under current climate conditions are identified for the scenario simulations. For these events, no common trend exists in the individual simulations. Thus, they may rather be attributed to long-term (e.g. decadal) variability than to the Greenhouse Gas forcing. Nevertheless, the result indicates that high-impact weather systems will remain an important risk in the Mediterranean Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r = 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Centennial-scale records of sea-surface temperature and opal composition spanning the Last Glacial Maximum and Termination 1 (circa 25–6 ka) are presented here from Guaymas Basin in the Gulf of California. Through the application of two organic geochemistry proxies, the U37K′ index and the TEX86H index, we present evidence for rapid, stepped changes in temperatures during deglaciation. These occur in both temperature proxies at 13 ka (∼3°C increase in 270 years), 10.0 ka (∼2°C decrease over ∼250 years) and at 8.2 ka (3°C increase in <200 years). An additional rapid warming step is also observed in TEX86H at 11.5 ka. In comparing the two temperature proxies and opal content, we consider the potential for upwelling intensity to be recorded and link this millennial-scale variability to shifting Intertropical Convergence Zone position and variations in the strength of the Subtropical High. The onset of the deglacial warming from 17 to 18 ka is comparable to a “southern hemisphere” signal, although the opal record mimics the ice-rafting events of the north Atlantic (Heinrich events). Neither the modern seasonal cycle nor El Niño/Southern Oscillation patterns provide valid analogues for the trends we observe in comparison with other regional records. Fully coupled climate model simulations confirm this result, and in combination we question whether the seasonal or interannual climate variations of the modern climate are valid analogues for the glacial and deglacial tropical Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential impact of climate change on areas of strategic importance for water resources remains a concern. Here, river flow projections for the River Medway, above Teston in southeast England are presented, which is just such an area of strategic importance. The river flow projections use climate inputs from the Hadley Centre Regional Climate Model (HadRM3) for the time period 1960–2080 (a subset of the early release UKCP09 projections). River flow predictions are calculated using CATCHMOD, the main river flow prediction tool of the Environment Agency (EA) of England and Wales. In order to use this tool in the best way for climate change predictions, model setup and performance are analysed using sensitivity and uncertainty analysis. The model's representation of hydrological processes is discussed and the direct percolation and first linear storage constant parameters are found to strongly affect model results in a complex way, with the former more important for low flows and the latter for high flows. The uncertainty in predictions resulting from the hydrological model parameters is demonstrated and the projections of river flow under future climate are analysed. A clear climate change impact signal is evident in the results with a persistent lowering of mean daily river flows for all months and for all projection time slices. Results indicate that a projection of lower flows under future climate is valid even taking into account the uncertainties considered in this modelling chain exercise. The model parameter uncertainty becomes more significant under future climate as the river flows become lower. This has significant implications for those making policy decisions based on such modelling results. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.