988 resultados para Climate change reparation scheme
Resumo:
The growing importance of logistics in increasingly globalised production and consumption systems strengthens the case for explicit consideration of the climate risks that may impact on the operation of ports in the future, as well as the formulation of adaptation responses that act to enhance their resilience. Within a logistics chain, seaports are functional nodes of significant strategic importance, and are considered as critical gateways linking local and national supply chains to global markets. However, they are more likely to be exposed to vagaries of climate-related extreme events due to their coastal locations. As such, they need to be adaptive and respond to the projected impacts of climate change, in particular extreme weather events. These impacts are especially important in the logistics context as they could result in varying degrees of business interruption; including business closure in the worst case scenario. Since trans-shipment of freight for both the import and export of goods and raw materials has a significant impact on Australia’s sustained economic growth it was considered important to undertake a study of port functional assets, to assess their vulnerability to climate change, to model the potential impacts of climate-related extreme events, and to highlight possible adaptation responses.
Resumo:
The global food system is undergoing unprecedented change. With population increases, demands for food globally will continue to rise at the same time that agricultural environments are compromised through urban encroachment, climate change and environmental degradation. Australia has long identified itself as an agricultural exporting nation—but what will its capacity be in feeding an increasing global population as it also comes to terms with extreme climatic events such as the floods, fires and droughts, and reduced water availability, experienced in recent decades? This chapter traces the history of Australian agricultural exports and evaluates its food production and export capacity against scientific predictions of climate change impacts. With the federal government forecasting declines in the production of wheat, beef, dairy and sugar, Australia’s key export commodities may well be compromised. Calls to produce more food using new technologies are likely to generate significant environmental problems. Yet, a radical reconfiguration of Australian agriculture which incorporates alternative approaches, such as agro-ecology, is rarely considered by government and industry.
Resumo:
The current view of Australian state and national governments about the effects of climate change on agriculture is that farmers – through the adoption of mitigation and adaptation strategies – will remain resilient, and agricultural production will continue to expand. The assumption is that neoliberalism will provide the best ‘free market’ options for climate change mitigation and adaptation in farming. In contrast, we argue that neoliberalism will increase the move towards productivis (‘high-tech’) agriculture – the very system that has caused major environmental damage to the Australian continent. High-tech farming is highly dependent upon access to water and fossil fuels, both of which would appear to be the main limits to production in future decades. Productivist agriculture is a system highly reliant upon fertilizers and fuels that are derived from the petrochemical industry, and are currently increasing in cost as the price of oil increases.
Resumo:
For over 150 years Australia has exported bulk, undifferentiated, commodities such as wool, wheat, meat and sugar to the UK and more recently to Japan, Korea, and the Middle East. It is estimated that, each year, Australia's farming system feeds a domestic population of some 22 million people, while exporting enough food to feed another 40 million. With the Australian population expected to double in the next 40 years, and with the anticipated growth in the world's population to reach a level of some 9 billion (from its present level of 7 billion) in the same period, there are strong incentives for an expansion of food production in Australia. Neoliberal settings are encouraging this expansion at the same time as they are facilitating importation of foods, higher levels of foreign direct investment and the commoditisation of resources (such as water). Yet, expansion in food production – and in an era of climate change – will continue to compromise the environment. After discussing Australia's neoliberal framework and its relation to farming, this paper outlines how Australia is attempting to address the issue of food security. It argues that productivist farming approaches that are favoured by both industry and government are proving incapable of bringing about long-term production outcomes that will guarantee national food security.
Resumo:
Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.
Resumo:
There has been an intense debate about climatic impacts on the transmission of malaria. It is vitally important to accurately project future impacts of climate change on malaria to support effective policy–making and intervention activity concerning malaria control and prevention. This paper critically reviewed the published literature and examined both key findings and methodological issues in projecting future impacts of climate change on malaria transmission. A literature search was conducted using the electronic databases MEDLINE, Web of Science and PubMed. The projected impacts of climate change on malaria transmission were spatially heterogeneous and somewhat inconsistent. The variation in results may be explained by the interaction of climatic factors and malaria transmission cycles, variations in projection frameworks and uncertainties of future socioecological (including climate) changes. Current knowledge gaps are identified, future research directions are proposed and public health implications are assessed. Improving the understanding of the dynamic effects of climate on malaria transmission cycles, the advancement of modelling techniques and the incorporation of uncertainties in future socioecological changes are critical factors for projecting the impact of climate change on malaria transmission.
Resumo:
Major disasters, such as bushfires or floods, place significant stress on scarce public resources. Climate change is likely to exacerbate this stress. An integrated approach to disaster risk management (DRM) and climate change adaptation (CCA) could reduce the stress by encouraging the more efficient use of pooled resources and expertise. A comparative analysis of three extreme climate-related events that occurred in Australia between 2009 and 2011 indicated that a strategy to improve interagency communication and collaboration would be a key factor in this type of policy/planning integration. These findings are in accord with the concepts of Joined-up Government and Network Governance. Five key reforms are proposed: developing a shared policy vision; adopting multi-level planning; integrating legislation; networking organisations; and establishing cooperative funding. These reforms are examined with reference to the related research literature in order to identify potential problems associated with their implementation. The findings are relevant for public policy generally but are particularly useful for CCA and DRM.
Resumo:
Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children’s health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children’s health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children’s vulnerability to climate change; (3) projecting children’s disease burden under climate change scenarios; (4) exploring children’s disease burden related to climate change in low-income countries, and ; (5) identifying the most cost-effective mitigation and adaptation actions from a children’s health perspective.
Resumo:
Background Many studies have found associations between climatic conditions and dengue transmission. However, there is a debate about the future impacts of climate change on dengue transmission. This paper reviewed epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission. Methods A literature search was conducted in October 2012, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search focused on peer-reviewed journal articles published in English from January 1991 through October 2012. Results Sixteen studies met the inclusion criteria and most studies showed that the transmission of dengue is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. Studies on the potential impacts of climate change on dengue indicate increased climatic suitability for transmission and an expansion of the geographic regions at risk during this century. A variety of quantitative modelling approaches were used in the studies. Several key methodological issues and current knowledge gaps were identified through this review. Conclusions It is important to assemble spatio-temporal patterns of dengue transmission compatible with long-term data on climate and other socio-ecological changes and this would advance projections of dengue risks associated with climate change. Keywords: Climate; Dengue; Models; Projection; Scenarios
Resumo:
Based on a survey of climate change experts in different stakeholder groups and interviews with corporate climate change managers, this study provides insights into the gap between what information stakeholders expect and what Australian corporations disclose. This paper focuses on annual reports and sustainability reports with specific reference to the disclosure of climate change-related corporate governance practices. The findings culminate in the refinement of a best practice index for the disclosure of climate-change-related corporate governance practises. Interview results indicate that the low levels of disclosures made by Australian companies may be due to a number of factors. These include a potential expectations gap, the absence of pressure from powerful stakeholders, a concern for stakeholder information overload, the cost of providing information, limited perceived accountability for climate change, and preferring other media for disclosure.
Resumo:
This project was a step forward in developing the scientific basis for a methodology to assess the resilience of water supply systems under the impacts of climate change. The improved measure of resilience developed in this project provides an approach to assess the ability of water supply systems to absorb the pressure due changing climate while sustaining supply, and their speed of recovery in case of failure. The approach developed can be applied to any generic water supply system.
Resumo:
The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.
Resumo:
Settlements and communities in the Great Barrier Reef (GBR) are highly vulnerable to climate change and face an uncertain social, economic and environmental future. The concept of community resilience is gaining momentum as stakeholders and institutions seek to better understand the social, economic and governance factors which affect community capacity to adapt in the face of climate change. This paper defines a framework to benchmark community resilience and applies it to a case study in the Wet Tropics in tropical Queensland within the GBR catchment. It finds that rural, indigenous and some urban populations are highly vulnerable and sensitive to climate change, particularly in terms of economic vitality, community knowledge, aspirations and capacity for adaptation. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Capacity to manage the possible shocks associated with the impacts of climate change and extreme climatic events is emerging and needs to be carefully fostered and further developed to achieve broader community resilience outcomes. Better information about what actions, policies and arrangements build community resilience and mobilise adaptive capacity in the face of climate change is needed.
Resumo:
Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.
Resumo:
Potential conflicts exist between biodiversity conservation and climate-change mitigation as trade-offs in multiple-use land management. This study aims to evaluate public preferences for biodiversity conservation and climate-change mitigation policy considering respondents’ uncertainty on their choice. We conducted a choice experiment using land-use scenarios in the rural Kushiro watershed in northern Japan. The results showed that the public strongly wish to avoid the extinction of endangered species in preference to climate-change mitigation in the form of carbon sequestration by increasing the area of managed forest. Knowledge of the site and the respondents’ awareness of the personal benefits associated with supporting and regulating services had a positive effect on their preference for conservation plans. Thus, decision-makers should be careful about how they provide ecological information for informed choices concerning ecosystem services tradeoffs. Suggesting targets with explicit indicators will affect public preferences, as well as the willingness of the public to pay for such measures. Furthermore, the elicited-choice probabilities approach is useful for revealing the distribution of relative preferences for incomplete scenarios, thus verifying the effectiveness of indicators introduced in the experiment.