937 resultados para Citrus pulp
Resumo:
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.
Resumo:
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.
Resumo:
The effect of bentonite micro-particles and cationic polyacrylamide (CPAM) on the filtration properties of bagasse pulp was investigated under shearing conditions. CPAM improves retention but the bentonite addition level must be optimised for further improvements in retention. A Dynamic Drainage Jar (‘Britt Jar’) was modified to allow bagasse pulp slurry to be subjected to vacuum allowing a thin pulp pad to be formed. Bagasse pulp which had had the majority of the fine fibre removed prior to pulping drained more quickly than a conventional bagasse pulp when vacuum was not applied, however this situation was reversed when vacuum was used. The flocculants continue to improve fibre retention under vacuum and shear conditions but with reduced effectiveness.
Resumo:
Dental pulp cells (DPCs) have shown promising potential in dental tissue repair and regeneration. However, during in vitro culture, these cells undergo replicative senescence and result in significant alteration in cell proliferation and differentiation. Recently, the transcription factors of Oct-4, Sox2, c-Myc, and Klf4 have been reported to play a regulatory role in the stem cell self-renewal process, namely cell reprogramming. Therefore, it is interesting to know whether the replicative senescence during the culture of dental pulp cells is related to the diminishing of the expression of these transcription factors. In this study, we investigated the expression of the reprogramming markers Oct-4, Sox2, and c-Myc in the in vitro explant cultured dental pulp tissues and explant cultured dental pulp cells (DPCs) at various passages by immunofluorescence staining and real-time polymerase chain reaction analysis. Our results demonstrated that Oct-4, Sox2, and c-Myc translocated from nucleus in the first 2 passages to cytoplasm after the third passage in explant cultured DPCs. The mRNA expression of Oct-4, Sox2, and c-Myc elevated significantly over the first 2 passages, peaked at second passage (P < .05), and then decreased along the number of passages afterwards (P < .05). For the first time we demonstrated that the expression of reprogramming markers Oct-4, Sox2, and c-Myc was detectable in the early passaged DPCs, and the sequential loss of these markers in the nucleus during DPC cultures might be related to the cell fate of dental pulp derived cells during the long-term in vitro cultivation under current culture conditions.
Resumo:
This is a review of painter Andrzej Zielinski's exhibition at gallery 9 in Sydney. It highlights the artist's expressionistic style and strong colour sense as well as his association with American painterly traditions. The artist application of acrylic modelling paste and his paintings also gives them a sculptural and architectural dimension, and on a conceptual level play with notions of mimesis and material form.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
Sugarcane bagasse pulp normally has high dewatering resistance and poor strength properties. In a previous study it was shown that highly depithed bagasse chemical pulp has excellent dewatering properties which may improve the production rate of bagasse based tissue, paper and board. In this study pulp properties of this highly depithed bagasse pulp were tested and compared favourably with regular depithed bagasse pulp. In addition to better dewatering rates, the pulp yield, tear strength and water retention value seemingly improved. Whilst a slight reduction in burst, tensile and short-span compression strengths occurred, they were still comparable to values reported for a regular bagasse pulp.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt), is a polyphagous pest, and many citrus types are included among its hosts. While quantification of citrus host use by B. tryoni is lacking, citrus is generally considered a ‘low pressure’ crop. This paper investigates B. tryoni female oviposition preference and offspring performance in five citrus types; Murcott mandarin (Citrus reticulata), Navel orange and Valencia orange (Citrus sinensis), Eureka lemon (Citrus limon) and yellow grapefruit (Citrus paradisi). Oviposition preference was investigated in laboratory-based choice and no-choice experiments, while immature survival and offspring performance were investigated by infesting fruits in the laboratory and evaluating pupal recovery, pupal emergence and F1 fecundity. Fruit size, Brix level and peel toughness were also measured for correlation with host use. Bactrocera tryoni demonstrated an oviposition preference hierarchy among the citrus fruits tested; Murcott and grapefruit were most preferred for oviposition and lemon the least, while preference for Navel and Valencia was intermediate. Peel toughness was negatively correlated with B. tryoni oviposition preference, while no significant correlations were detected between oviposition and Brix level or fruit size. Immature survival in the tested fruit was very low. Murcott was the best host (21% pupal recovery), while all other citrus types that showed pupal recovery of 6% or lower and no pupae were recovered from Valencia orange. In pupae recovered from Navel orange and lemon, adult eclosion was greatly reduced, while in grapefruit and lemon, no eggs were recovered from F1 adults. Based on these laboratory results, many commercial citrus varieties appear to be poor hosts for B. tryoni and may pose a low post-harvest and quarantine risk. These findings need to be confirmed in the field, as they impact on both pre-harvest and post-harvest countermeasures.
Resumo:
Fruit flies are the insects which cause maggots in your backyard fruit and vegetables. They are not just a nuisance to gardeners, but the single greatest insect threat to commercial and subsistence fruit growers throughout Asia, Australia and the Pacific. Queensland fruit fly, the focus of this PhD, costs Australia an estimated $100million per year. I focused specifically on how Queensland fruit fly uses different commercial citrus varieties. I identified specific plant related mechanisms which increase a fruit’s resistance to fruit fly attack. This information can be used by plant breeders to make fruit less prone to fruit fly damage.
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.
Resumo:
Regenerative endodontics aims to preserve, repair or regenerate the dental pulp tissue. Dental pulp stem cells, have a potential use in dental tissue generation. However, specific requirements to drive the dental tissue generation are still obscured. We established an in vivo model for studying the survival of dental pulp cells (DPC) and their potential to generate dental pulp tissue. DPC were mixed with collagen scaffold with or without slow release bone morphogenic protein 4 (BMP-4) and fibroblast growth factor 2 (FGF2). The cell suspension was transplanted into a vascularized tissue engineering chamber in the rat groin. Tissue constructs were harvested after 2, 4, 6, and 8 weeks and processed for histomorphological and immunohistochemical analysis. After 2 weeks newly formed tissue with new blood vessel formation were observed inside the chamber. DPC were found around dentin, particularly around the vascular pedicle and also close to the gelatin microspheres. Cell survival, was confirmed up to 8 weeks after transplantation. Dentin Sialophosphoprotein (DSPP) positive matrix production was detected in the chamber, indicating functionality of dental pulp progenitor cells. This study demonstrates the potential of our tissue engineering model to study rat dental pulp cells and their behavior in dental pulp regeneration, for future development of an alternative treatment using these techniques.
Resumo:
High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.
Resumo:
Brown spot (caused by Alternaria alternata) is a major disease of citrus in subtropical areas of Australia. A number of chemicals, the strobilurins azoxystrobin, trifloxystrobin, pyraclostrobin and methoxycrylate, a plant activator (acibenzolar), copper hydroxide, mancozeb, captan, iprodione and chlorothalonil/pyrimthanil were tested in the field for its control. Over three seasons, trees in a commercial orchard received 16, 14 and 7 fungicide sprays, respectively, commencing at flowering in the first season, and petal fall in the later seasons. In all experiments, the strobilurins used alone, or incorporated with copper and mancozeb, were as effective as, or better than the industry standard of copper and mancozeb alone. The only exception was trifloxystrobin, which when used alone was less effective than the industry standard. Acibenzolar used alone was ineffective. Applying a mixture of azoxystrobin and acibenzolar was found to reduce the incidence of brown spot compared with applying azoxystrobin alone but, in either case, disease levels were not found to be significantly different to the industry standard. Captan, iprodione and chlorothalonil/pyrimthanil were as effective as the industry standard. The incidence and severity of rind damage were significantly lowest in the azoxystrobin, methoxycrylate, iprodione and chlorothalonil/pyrimthanil treatments. Medium and high rates of trifloxystrobin (0.07 g/L, 0 .15 g/L) and pyraclostrobin (0.8 g/L, 1.2 g/L) applied alone were the only treatments found to be IPM-incompatible as shown by the elevated level of scale infection on fruit.
Resumo:
Nematospora (Eremothecium) coryli was isolated from Citrus and identified for the first time in Australia. This insect-transmitted yeast was associated with dry rot in cultivated and native Citrus fruits. Although N. coryli is known as a serious seed pathogen of many tropical and sub-tropical plants, evidence is presented that it has been present and undetected in Queensland for at least ninety years.
Resumo:
Fruit-piercing moths are significant pests of a range of fruit crops throughout much of the world's tropics and subtropics. Feeding damage by the adult moths is most widely reported in varieties of citrus. In the years 2003 and 2004, fruit-piercing moth activity was observed regularly at night in citrus crops in northeast Australia, to determine the level of maturity (based on rind colour) and soundness of fruit attacked. 'Navelina' navel and 'Washington' navel orange, grapefruit and mixed citrus crops were assessed, and fruit was rated and placed into five categories: green, colouring, ripe, overripe and damaged. There were no statistical differences in the percentage of fruit attacked in each category across crops. However, within the individual crops significant proportions of green 'Navelina' fruit (58.7%) and green mixed citrus (57.1%) were attacked in 2004. Among all the crops assessed, 25.1% of moth feeding occurred on overripe or damaged fruit. Crops started to be attacked at least 8 weeks before picking, but in two crops there were large influxes of moths (reaching 27 and 35 moths/100 trees, respectively) immediately before harvest. Moth activity was most intense between late February and late March. Eudocima fullonia (Clerck) represented 79.1% of all moths recorded on fruit, with Eudocima materna (L.), Eudocima salaminia (Cramer) and Serrodes campana (Guen.) the only other species observed capable of inflicting primary damage. Our results suggest that growers should monitor moth activity from 8 weeks before harvest and consider remedial action if moth numbers increase substantially as the crop matures or there is a history of moth problems. The number of fruit pickings could be increased to progressively remove ripe fruit or early harvest of the entire crop contemplated if late influxes of moths are known.