944 resultados para Citrus flavonoids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is already known about this subject center dot Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. center dot In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. center dot Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid-TP interaction inhibits signalling downstream TP has not been shown. What this study adds center dot This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. center dot Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA(2) receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TP alpha- and TP beta-transfected HEK 293T cells was explored using binding assays and the TP antagonist H-3-SQ29548. Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium mobilization in a concentration-dependent manner (IC50 10-30 mu M). These flavonoids caused a significant impairment of U46619-induced platelet tyrosine phosphorylation and of ERK 1/2 activation. By contrast, in aspirin-treated platelets all these flavonoids, except quercetin, displayed minor effects on thrombin-induced calcium mobilization, ERK 1/2 and total tyrosine phosphorylation. Finally, apigenin, genistein and luteolin inhibited by > 50% H-3-SQ29548 binding to different cell types. These data further suggest that flavonoids may inhibit platelet function by binding to TP and by subsequent abrogation of downstream signalling. Binding of these compounds to TP occurs in human myometrium and in TP-transfected HEK 293T cells and suggests that antagonism of TP might mediate the effects of flavonoids in different tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves of 14 species of Ficus growing in the Budongo Forest, Uganda, were analysed for vacuolar flavonoids. Three to six accessions were studied for each species to see whether there was intraspecific chemical variation. Thirty-nine phenolic compounds were identified or characterised, including 14 flavonol O-glycosides, six flavone O-glycosides and 15 flavone C-glycosides. In some species the flavonoid glycosides were acylated. Ficus thonningii contained in addition four stilbenes including glycosides. Most of the species could be distinguished from each other on the basis of their flavonoid profiles, apart from Ficus sansibarica and Ficus saussureana, which showed a very strong intraspecific variation. However, on the whole flavonoid profiles were sufficiently distinct to help in future identifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 450 new flavonoid structures, reported from January 2001 until December 2003, are reviewed. They comprise anthocyanidins, flavones, flavonols, chalcones, dihydrochalcones, aurones, flavanones and dihydroflavonols, both as aglycones and as glycosides. The biological activity of some of the compounds is briefly discussed. There are 289 cited references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four European Pulicaria species, P. odora, P. paludosa, P. sicula and P. vulgare, were analysed for their surface and vacuolar constituents for comparison with previous data obtained for P. dysenterica. Each species had a distinct flavonoid pattern with notable differences between leaf and inflorescence. 6-Hydroxyflavonols were the major lipophilic components in all of the species and tissues except in the leaves of P. paludosa and P. vulgare, where scutellarein 6-methyl ether was the main constituent. In the leaves of P. sicula a more unusual flavone, 6-hydroxyluteolin 5,6,7,3′,4′-pentamethyl ether, was a major component. Pulicaria odora was distinguished by the presence of a series of methylated 6-hydroxykaempferol derivatives including a 3,5,6,7,4′-pentamethyl ether. Quercetagetin hexamethyl ether occurred in both tissues of P. sicula together with the 3,7,3,4′-tetra methyl ether and other quercetagetin derivatives, which were 5-methylated. Quercetagetin 3,7,3′-methyl ether was present in all species except P. odora. Flavonol glucuronides were characteristic vacuolar constituents of all the taxa studied. Two rare glycosides, patuletin and 6-hydroxykaempferol 6-methyl ether 7-glucuronides were identified in the inflorescence of P. odora. Pulicaria vulgaris, a rare plant of southern England, had the vacuolar flavonoid profile most similar to the other more abundant British plant, P. dysenterica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavonoids exert a multiplicity of neuroprotective actions within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning and cognitive function. These effects appear to be underpinned by two common processes. Firstly, they interact with critical protein and lipid kinase signalling cascades in the brain leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and synaptic plasticity. Secondly, they induce beneficial effects on the vascular system leading to changes in cerebrovascular blood flow capable of causing angiogenesis, neurogenesis and changes in neuronal morphology. Through these mechanisms, the consumption of flavonoid-rich foods throughout life holds the potential to limit neurodegeneration and to prevent or reverse age-dependent loses in cognitive performance. The intense interest in the development of drugs capable of enhancing brain function means that flavonoids may represent important precursor molecules in the quest to develop of a new generation of brain enhancing drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to suggest that neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. Therefore, treatment regimes aimed at modulating neuroinflammatory processes may act to slow the progression of these debilitating brain disorders. Recently, a group of dietary polyphenols known as flavonoids have been shown to exert neuroprotective effects in vivo and in neuronal cell models. In this review we discuss the evidence relating to the modulation of neuroinflammation by flavonoids. We highlight the evidence which suggests their mechanism of action involves: 1) attenuation of the release of cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α); 2) an inhibitory action against inducible nitric oxide synthase (iNOS) induction and subsequent nitric oxide (NO•) production; 3) inhibition of the activation of NADPH oxidase and subsequent reactive oxygen species generation; 4) a capacity to down-regulate the activity of pro-inflammatory transcription factors such as nuclear factor-κB (NF-κB); and 5) the potential to modulate signalling pathways such as mitogen-activated protein kinase (MAPK) cascade. We also consider the potential of these dietary compounds to represent novel therapeutic agents by considering their metabolism in the body and their ability to access the brain via the blood brain barrier. Finally, we discuss future areas of study which are necessary before dietary flavonoids can be established as therapeutic agents against neuroinflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flavonoid survey was carried out on 45 taxa from the genera Shorea, Hopea, Parashorea, Neobalanocarpus, and Dryobalanops of the tribe Shoreae in the Dipterocarpaceae. The study showed significant chemotaxonomic differences in leaf flavonoid aglycone patterns and the presence of tannins in these taxa. The flavonoid patterns are useful in the delimitation of some taxa. For example, the genus Parashorea is distinguished by the universal presence of kaempferol 3-methyl ether, and the monotypic genus Neobalanocarpus is unique in not producing ellagic and gallo tannins. The presence of chalcones and flavone C-glycosides supports the separation of the genus Hopea into two sections, section Dryobalanoides and section Hopea in Ashton's classification, which is based on the type of venation. The flavonoid distributions in this study show that they can be very useful for differentiating between the Balau group in the genus Shorea, and some scaly barked Hopea species, particularly H. helferi (lintah bukit), H. nutans (giam), and H. ferrea (malut). (C) 2008 The Linnean Society of London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence Suggests that a group of phytochemicals known as flavonoids are highly effective in reversing age-related declines in neuro-cognitive performance through their ability to interact with the cellular and molecular architecture of the brain responsible for memory and by reducing neuronal loss due to neurodegenerative Processes. In particular, they may increase the number of, and strength of, connections between neurons, via their specific interactions with the ERK and Akt signalling pathways, leading to an increase in neurotrophins Such as BDNF. Concurrently, their effects on the peripheral and Cerebral vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Finally, they have also been shown to reduce neuronal damage and losses induced by various neurotoxic species and neuroinflammation. Together, these processes act to maintain the number and quality of synaptic connections in the brain. a factor known to be essential for efficient LTP, synaptic plasticity and ultimately the efficient working of memory. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavonoids have been proposed to act as beneficial agents in a multitude of disease states, including cancer, cardiovascular disease, and neurodegenerative disorders. The biological effect of these polyphenols and their in vivo circulating metabolites will ultimately depend on the extent to which they associate with cells, either by interactions at the membrane or more importantly their uptake. This review summarises the current knowledge on the cellular uptake of flavonoids and their metabolites with particular relevance to further intracellular metabolism and the generation of potential new bioactive forms. Uptake and metabolism of the circulating forms of flavanols, flavonols, and flavanones into cells of the skin, the brain, and cancer cells is reviewed and potential biological relevance to intracellular formed metabolites is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuroprotective actions of dietary flavonoids involve a number of effects within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning and cognitive function. This multiplicity of effects appears to be underpinned by two processes. Firstly, they interact with important neuronal signalling cascades leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and differentiation. These interactions include selective actions on a number of protein kinase and lipid kinase signalling cascades, most notably the PI3K/Akt and MAP kinase pathways which regulate pro-survival transcription factors and gene expression. Secondly, they induce peripheral and cerebral vascular blood flow in a manner which may lead to the induction of angiogenesis, and new nerve cell growth in the hippocampus. Therefore, the consumption of flavonoid-rich foods, such as berries and cocoa, throughout life holds a potential to limit the neurodegeneration associated with a variety of neurological disorders and to prevent or reverse normal or abnormal deteriorations in cognitive performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory acquisition, consolidation, storage and retrieval. These low molecular weight polyphenols are widespread in the human diet, are absorbed to only a limited degree and localise in the brain at low concentration. However, they have been found to be highly effective in reversing age-related declines in memory via their ability to interact with the cellular and molecular architecture of the brain responsible for memory. These interactions include an ability to activate signalling pathways, critical in controlling synaptic plasticity, and a potential to induce vascular effects capable of causing new nerve cell growth in the hippocampus. Their ability to activate the extracellular signal-regulated kinase (ERK1/2) and the protein kinase B (PKB/Akt) signalling pathways, leading to the activation of the cAMP response element-binding protein (CREB), a transcription factor responsible for increasing the expression of a number of neurotrophins important in de. ning memory, will be discussed. How these effects lead to improvements in memory through induction of synapse growth and connectivity, increases in dendritic spine density and the functional integration of old and new neurons will be illustrated. The overall goal of this critical review is to emphasize future areas of investigation as well as to highlight these dietary agents as promising candidates for the design of memory-enhancing drugs with relevance to normal and pathological brain ageing (161 references).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that dietary-derived flavonoids have the potential to improve human memory and neuro-cognitive performance via their ability to protect vulnerable neurons, enhance existing neuronal function and stimulate neuronal regeneration. Long-term potentiation (LTP) is widely considered to be one of the major mechanisms underlying memory acquisition, consolidation and storage in the brain and is known to be controlled at the molecular level by the activation of a number of neuronal signalling pathways. These pathways include the phosphatidylinositol-3 kinase/protein kinase B/Akt (Akt), protein kinase C, protein kinase A, Ca-calmodulin kinase and mitogen-activated protein kinase pathways. Growing evidence suggests that flavonoids exert effects on LTP, and consequently memory and cognitive performance, through their interactions with these signalling pathways. Of particular interest is the ability of flavonoids to activate the extracellular signal-regulated kinase and the Akt signalling pathways leading to the activation of the cAMP-response element-binding protein, a transcription factor responsible for increasing the expression of a number of neurotrophins important in LTP and long-term memory. One such neurotrophin is brain-derived neurotrophic factor, which is known to be crucial in controlling synapse growth, in promoting an increase in dendritic spine density and in enhancing synaptic receptor density. The present review explores the potential of flavonoids and their metabolite forms to promote memory and learning through their interactions with neuronal signalling pathways pivotal in controlling LTP and memory in human subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects in the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by promoting neurocognitive performance, through changes in synaptic plasticity. It is likely that flavonoids exert such effects in neurons, through selective actions on different components within a number of protein kinase and lipid kinase signalling cascades, such as phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase. This review details the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to affect cellular function through changes in the activation state of target molecules and/or by modulating gene expression. Although, precise sites of action are presently unknown, their abilities to: (1) bind to ATP binding sites on enzymes and receptors; (2) modulate the activity of kinases directly; (3) affect the function of important phosphatases; (4) preserve neuronal Ca2+ homeostasis; and (5) modulate signalling cascades lying downstream of kinases, are explored. Future research directions are outlined in relation to their precise site(s) of action within the signalling pathways and the sequence of events that allow them to regulate neuronal function in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.