990 resultados para Cis-acting regulatory variants
Resumo:
Expression of the differentiated skeletal muscle phenotype is a process that appears to occur in at least two stages. First, pluripotent stem cells become committed to the myogenic lineage. Although undifferentiated and capable of continued proliferation, determined myoblasts are restricted to a single developmental fate. Upon receiving the appropriate environmental signals, these determined myoblasts withdraw from the cell cycle, fuse to form multi-nucleated myotubes, and begin to express a battery of muscle-specific gene products that make up the functional and contractile apparatus of the muscle. This project is aimed at the identification and characterization of factors that control the determination and differentiation of myogenic cells. We have cloned a cDNA, called myogenin, that plays an important role in these processes. Myogenin is expressed exclusively in skeletal muscle in vivo and myogenic cell lines in vitro. Its expression is sharply upregulated during differentiation. When constitutively expressed in fibroblasts, myogenin converts these cells to the myogenic lineage. Transfected cells behave as myogenic tissue culture cells with respect to the genes they express, the way they respond to environmental cues, and are capable of fusing to form multinucleated myotubes. Sequence analysis showed that this cDNA has homology to a family of transcription factors in a region of 72 amino acids known as the basic helix-loop-helix motif. This domain appears to mediate binding to a DNA sequence element known as an E-box (CANNTG) essential for the activity of the enhancers of many muscle-specific genes.^ Analysis of myogenin in tissue culture cells showed that its expression is responsive to many of the environmental cues, such as the presence of growth factors and oncogenes, that modulate myogenesis. In an attempt to identify the cis- and trans-elements that control myogenin expression and thereby understand what factors are responsible for the establishment of the myogenic lineage, we have cloned the myogenin gene. After analysis of the gene structure, we constructed a series of reporter constructs from the 5$\prime$ upstream sequence of the myogenin gene to determine which cis-acting sequences might be important in myogenin regulation. We found that 184 nucleotides of the 5$\prime$ sequence was sufficient to direct high-level muscle-specific expression of the reporter gene. Two sequence elements present in the 184 fragment, an E-box and a MEF-2 site, have been shown previously to be important in muscle-specific transcription. Mutagenesis of these sites revealed that both sites are necessary for full activity of the myogenin promoter, and suggests that a complex hierarchy of transcription factors control myogenic differentiation. ^
Resumo:
The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^
Resumo:
Epidemiological studies have shown cadmium to induce cancer in humans, while experimental studies have proven this metal to be a potent tumor inducer in animals. However, cadmium appears nonmutagenic in most prokaryotic and eukaryotic mutagenesis assays. In this study, we present the identification of mutations in normal rat kidney cells infected with the mutant MuSVts110 retrovirus (6m2 cells) as a result of treatment with cadmium chloride. The detection of these mutations was facilitated by the use of a novel mutagenesis assay established in this laboratory. The 6m2 reversion assay is a positive selection system based on the conditional expression of the MuSVts110 v-mos gene. In MuSVts110 the gag and mos genes are fused out of frame, thus the translation of the v-mos sequence requires a frameshift in the genomic RNA. In 6m2 cells this frameshift is accomplished by the temperature-dependent splicing of the primary MuSVts110 transcript. Splicing of MuSVts110, which is mediated by cis-acting sequences, occurs when 6m2 cells are grown at 33$\sp\circ$C and below, but not at 39$\sp\circ$C. Therefore, 6m2 cells appear transformed at low growth temperatures, but take on a morphologically normal appearance when grown at high temperatures. The treatment of 6m2 cells with cadmium chloride resulted in the outgrowth of a number of cells that reverted to the transformed state at high growth temperatures. Analysis of the viral proteins expressed in these cadmium-induced 6m2 revertants suggested that they contained mutations in their MuSVts110 DNA. Sequencing of the viral DNA from three revertants that constitutively expressed the P85$\sp{gag{-}mos}$ transforming protein revealed five different mutations. The Cd-B2 revertant contained three of those mutations: an A-to-G transition 48 bases downstream of the MuSVts110 3$\sp\prime$ splice site, plus a G-to-T and an A-to-T transversion 84 and 100 bases downstream of the 5$\sp\prime$ splice site, respectively. The Cd-15-5 revertant also contained a point mutation, a T-to-C transition 46 bases downstream of the 5$\sp\prime$ splice site, while Cd-10-5 contained a three base deletion of MuSVts110 11 bases upstream of the 3$\sp\prime$ splice site. A fourth revertant, Cd-10, expressed a P100$\sp{gag{-}mos}$ transforming protein, and was found to have a two base deletion. This deletion accomplished the frameshift necessary for v-mos expression, but did not alter MuSVts110 RNA splicing and the expression of p85$\sp{gag{-}mos}.$ Lastly, sequencing of the MuSVts110 DNA from three spontaneous revertants revealed the same G to T transversion in each one. This was the same mutation that was found in the Cd-B2 revertant. These findings provide the first example of mutations resulting from exposure to cadmium and suggest, by the difference in each mutation, the complexity of the mechanism utilized by cadmium to induce DNA damage. ^
Resumo:
Type II collagen is a major chondrocyte-specific component of the cartilage extracellular matrix and it represents a typical differentiation marker of mature chondrocytes. In order to delineate cis-acting elements of the mouse pro$\alpha1$(II) collagen gene that control chondrocyte-specific expression in intact mouse embryos, we generated transgenic mice harboring chimeric constructions in which varying lengths of the promoter and intron 1 sequences were linked to a $\beta$-galactosidase reporter gene. A construction containing a 3000-bp promoter and a 3020-bp intron 1 fragment directed high levels of $\beta$-galactosidase expression specifically to chondrocytes. Successive deletions of intron 1 delineated a 48-bp fragment which targeted $\beta$-galactosidase expression to chondrocytes with the same specificity as the larger intron 1 fragment. When the Col2a1 promoter was replaced with a minimal $\beta$-globin promoter, the 48-bp intron 1 sequence was still able to target expression of the transgene to chondrocytes, specifically. Therefore a 48-bp intron 1 DNA segment of the mouse Col2a1 gene contains the necessary information to confer high-level, temporally correct, chondrocyte expression to a reporter gene in intact mouse embryos and that Col2a1 promoter sequences are dispensable for chondrocyte expression. Nuclear proteins present selectively in mouse primary chondrocytes and rat chondrosarcoma cells bind to the three putative HMG (High-Mobility-Group) domain protein binding sites in this 48-bp sequence and the chondrocyte-specific proteins likely bind the DNA through minor groove. Together, my results indicate that a 48-bp sequence in Col2a1 intron 1 controls chondrocyte-specific expression in vivo and suggest that chondrocytes contain specific nuclear proteins involved in enhancer activity. ^
Resumo:
We report the expression of a linear reporter construct in isolated human mitochondria. The reporter construct contained the entire human D-Loop with adjacent tRNA (MTT) genes (mt.15956-647), the human ND1 gene with an in frame GFP gene and adjacent endogenous MTT genes and heterologous rat MTT genes. Natural competence of isolated human mitochondria of HepG2 cells was used to import reporter constructs. The import efficiency of various fluorescently labelled PCR-generated import substrates in the range of 250bp up to 3.5kb was assessed by quantitative PCR and evaluated by confocal microscopy. Heterologous expression of the imported construct was confirmed at RNA level by a circular RNA (cRNA)-RT-PCR assay for the expression of tRNAs and by in organello [α-(32)P]-UTP labelling and subsequent hybridisation to reporter-specific sequences for monitoring mRNA expression. Heterologous expression of rat mitochondrial tRNA(Leu(UUR)) (rMT-TL1) was confirmed by co-/post-transcriptional trinucleotide (CCA) addition. Interestingly, the rat-specific MT-TL1 was correctly processed in isolated human mitochondria at the 3' end, but showed an aberrant 5' end processing. Correct 3' end processing of the heterologous expressed mitochondrial rat tRNA(Ser2) (MT-TS2) was detected. These findings demonstrate the feasibility of genetic manipulation of human mitochondria, providing a tool for characterisation of cis-acting elements of the human mitochondrial genome and for the study of human mitochondrial tRNA processing in organello.
Resumo:
Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
Resumo:
Three U7 RNA-related sequences were isolated from mouse genomic DNA libraries. Only one of the sequences completely matches the published mouse U7 RNA sequence, whereas the other two apparently represent pseudogenes. The matching sequence represents a functional gene, as it is expressed after microinjection into Xenopus laevis oocytes. Sequence variations of the conserved cis-acting 5' and 3' elements of U RNA genes may partly explain the low abundance of U7 RNA.
Resumo:
The unicellular amoeba Dictyostelium discoideum embarks on a developmental program upon starvation. During development, extracellular oscillatory cAMP signaling orchestrates the chemotaxis-mediated aggregation of ∼105 amoebae and is required for optimal induction of so-called pulse-induced genes. This requirement for pulsatile CAMP reflects adaptation of the cAMP-receptor-mediated pathways that regulate these genes. Through examination of a collection of pulse-induced genes, we defined two distinct gene classes based on their induction kinetics and the impact of mutations that impair PKA signaling. The first class (represented by D2 and prtA) is highly dependent on PKA signaling, whereas the second class (represented by carA, gpaB, and acaA) is not. Analysis of expression kinetics revealed that these classes are sequentially expressed with the PKA-independent genes peaking in expression before the PKA-dependent class. Experiments with cycloheximide, an inhibitor of translation, demonstrated that the pulse induction of both classes depends on new protein synthesis early in development. carA and gpaB also exhibit pulse-independent, starvation-induced expression which, unlike their pulse induction, was found to be insensitive to cycloheximide added at the outset of starvation. This result indicates that the mechanism of starvation induction pre-exists in growing cells and is distinct from the pulse induction mechanism for these genes. In order to identify cis-acting elements that are critical for induction of carA, we constructed a GFP reporter controlled by a 914-base-pair portion of its promoter and verified that its expression was PKA-independent, pulse-inducible, and developmentally regulated like the endogenous carA gene. By a combination of truncation, internal deletion, and site-directed mutation, we defined several distinct functional elements within the carA promoter, including a 39-bp region required for pulse induction between base pairs -321 and -282 (relative to the transcription start site), a 131-bp region proximal to the start site that is sufficient for starvation induction, and two separate enhancer domains. Identification of factors that interact with these promoter elements and genetic approaches exploiting the GFP reporter described here should help complete our understanding of the mechanisms regulating these genes, including adaptation mechanisms that likely also govern chemotaxis of Dictyostelium and mammalian cells. ^
Resumo:
CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^
Resumo:
Our laboratory has developed and partially characterized a strain of New Zealand white rabbits that are resistant to the hypercholesterolemia which typically occurs in normal rabbits when fed a cholesterol-enriched diet. This phenotype is most likely attributed to an increase in bile acid excretion by hypercholesterolemia-resistant (CRT) rabbits as a result of elevated enzyme activity of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H), the rate-limiting enzyme in bile acid synthesis. Northern analysis revealed that CRT rabbits, in comparison to normal rabbits, have a 7-fold greater steady-state C7$\alpha$H mRNA levels irrespective of dietary regimen. The C7$\alpha$H gene in both phenotypes was determined to be a single copy gene. The hypothesis was that the elevated C7$\alpha$H mRNA levels in CRT rabbits, in comparison to normal animals, was due to an increase in the transcription rate of the C7$\alpha$H gene as a result of a mutation in a cis-acting element and/or a trans-acting factor within the hepatocyte. To isolate the C7$\alpha$H gene from both normal and CRT rabbits, genomic libraries were prepared from both phenotypes into $\lambda$GEM12 vectors using conventional techniques. Three CRT and one normal phage clones that contained the C7$\alpha$H gene were identified by screening the library with a series of probes located within different exons of the C7$\alpha$H cDNA. Sequencing analysis confirmed that approximately 1100 bp of the C7$\alpha$H 5'-flanking region from both normal and CRT phenotypes was identical. The increase in C7$\alpha$H mRNA levels was not attributed to a cis-acting mutation within this region. Liver nuclear extracts were prepared from normal and CRT rabbits maintained either on a basal or 0.25% cholesterol-enriched diet and incubated with several radiolabeled DNA fragments from the C7$\alpha$H gene. A 37 basepair region, located between nucleotides $-$452 to $-$416 was identified that had altered binding patterns between normal and CRT rabbits as a function of diet. Two additional regions, $-$747 to $-$575 and $-$580 to $-$442, produced banding patterns which were identical, irrespective of phenotype or diet. In conclusion, these studies suggested that the increase in C7$\alpha$H mRNA in CRT rabbits was due to differences in binding of a cholesterol-responsive transcription factor to the C7$\alpha$H promoter. ^
Resumo:
Viral systems have contributed tremendously to the understanding of eukaryotic molecular biology. The proportional pattern of retroviral RNA expression offers many clues into the alternative splicing of cellular transcripts. The MuSVts110 virus presents an unusual expression system, where the mechanistic combination of RNA splicing and cellular transformation can be physiologically manipulated. Splicing of MuSVts110 pre-mRNA occurs inefficiently (30%-50%) at 33$\sp\circ$C or below and is subdued at 39$\sp\circ$C ($<$5%). Like most alternatively spliced cellular and retroviral transcripts, the MuSVts110 pre-mRNA contains cis-acting intron and exon sequences that attenuate splicing. These include a splicing inhibitory sequence at the 3$\prime$ end of the MuSVts110 v-mos exon, called the E2 Distal Element (E2DE), and a sub-optimal 3$\prime$ splice site. The E2DE directly inhibits MuSVts110 RNA splicing in a sequence-specific fashion at 39$\sp\circ$C but not at 28$\sp\circ$C, potentially through the association of cellular factors. Inefficient MuSVts110 splicing is pre-dominantly attributed to the utilization of multiple weak branchpoint sequences located between $-113$ and $-34$ nucleotides upstream of the 3$\prime$ splice site. The molecular control of MuSVts110 splicing, represented primarily by scattered multiple inefficient branchpoint sequences that are conditionally modulated by the E2DE at higher growth temperatures, is discussed. ^
Resumo:
The aim of my project is to examine the mechanisms of cell lineage-specific transcriptional regulation of the two type I collagen genes by characterizing critical cis-acting elements and trans-acting factors. I hypothesize that the transcription factors that are involved in the cell lineage-specific expression of these genes may have a larger essential role in cell lineage commitment and differentiation. I first examined the proximal promoters of the proα1(I) and the proα2(I) collagen genes for cell type-specific DNA-protein interactions, using in vitro DNaseI and in vivo DMS footprinting. These experiments demonstrated that the cis-acting elements in these promoters are accessible to ubiquitous DNA-binding proteins in fibroblasts that express these genes, but not in other cells that do not express these genes. I speculate that in type I collagen-expressing cells, cell type-specific enhancer elements facilitate binding of ubiquitous proteins to the proximal promoters of these genes. Subsequently, examination of the upstream promoter of the proα(I) collagen gene by transgenic mice experiments delineated a 117 bp sequence (-1656 to -1540 bp) as the minimum element required for osteoblast-specific expression. This 117 bp element contained two segments that appeared to have different functions: (1) the A-segment, which was necessary to obtain osteoblast-specific expression and (2) the C-segment, which was dispensable for osteoblast-specific expression, but was necessary to obtain high-level expression. In experiments to identify trans-acting factors that bind to the 117 bp element, I have demonstrated that the cell lineage-restricted homeodomain proteins, Dlx2, Dlx5 and mHOX, bound to the A-segment and that the ubiquitous transcription factor, Sp1, bound to the C-segment of this element. These results suggested a model where the binding of cell lineage-restricted proteins to the A-segment and of ubiquitous proteins to the C-segment of the 117 bp element of the proα1 (I) collagen gene activated this gene in osteoblasts. These results, combined with additional evidence that Dlx2, Dlx5 and mHOX are probably involved in osteoblast differentiation, support my hypothesis that the transcription factors involved in osteoblast-specific expression of type I collagen genes may have essential role in osteoblast lineage commitment and differentiation. ^
Resumo:
DsrA is an 87-nt untranslated RNA that regulates both the global transcriptional silencer and nucleoid protein H-NS and the stationary phase and stress response sigma factor RpoS (σs). We demonstrate that DsrA acts via specific RNA:RNA base pairing interactions at the hns locus to antagonize H-NS translation. We also give evidence that supports a role for RNA:RNA interactions at the rpoS locus to enhance RpoS translation. Negative regulation of hns by DsrA is achieved by the RNA:RNA interaction blocking translation of hns RNA. In contrast, results suggest that positive regulation of rpoS by DsrA occurs by formation of an RNA structure that activates a cis-acting translational operator. Sequences within DsrA complementary to three additional genes, argR, ilvIH, and rbsD, suggest that DsrA is a riboregulator of gene expression that acts coordinately via RNA:RNA interactions at multiple loci.
Resumo:
DsrA RNA regulates both transcription, by overcoming transcriptional silencing by the nucleoid-associated H-NS protein, and translation, by promoting efficient translation of the stress σ factor, RpoS. These two activities of DsrA can be separated by mutation: the first of three stem-loops of the 85 nucleotide RNA is necessary for RpoS translation but not for anti-H-NS action, while the second stem-loop is essential for antisilencing and less critical for RpoS translation. The third stem-loop, which behaves as a transcription terminator, can be substituted by the trp transcription terminator without loss of either DsrA function. The sequence of the first stem-loop of DsrA is complementary with the upstream leader portion of rpoS messenger RNA, suggesting that pairing of DsrA with the rpoS message might be important for translational regulation. Mutations in the Rpos leader and compensating mutations in DsrA confirm that this predicted pairing is necessary for DsrA stimulation of RpoS translation. We propose that DsrA pairing stimulates RpoS translation by acting as an anti-antisense RNA, freeing the translation initiation region from the cis-acting antisense RNA and allowing increased translation.
Resumo:
Histone mRNAs are naturally intronless and accumulate efficiently in the cytoplasm. To learn whether there are cis-acting sequences within histone genes that allow efficient cytoplasmic accumulation of RNAs, we made recombinant constructs in which sequences from the mouse H2a gene were cloned into a human β-globin cDNA. By using transient transfection and RNase protection analysis, we demonstrate here that a 100-bp sequence within the H2a coding region permits efficient cytoplasmic accumulation of the globin cDNA transcripts. We also show that this sequence appears to suppress splicing and can functionally replace Rev and the Rev-responsive element in the cytoplasmic accumulation of unspliced HIV-1-related mRNAs. Like the Rev-responsive element, this sequence acts in an orientation-dependent manner. We thus propose that the sequence identified here may be a member of the cis-acting elements that facilitate the cytoplasmic accumulation of naturally intronless gene transcripts.