981 resultados para Chromatography, Gas
Resumo:
Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.