248 resultados para Choline
Resumo:
Objective: Preterm infants are exposed to multiple painful procedures in the neonatal intensive care unit (NICU) during a period of rapid brain development. Our aim was to examine relationships between procedural pain in the NICU and early brain development in very preterm infants.
Methods: Infants born very preterm (N ¼ 86; 24–32 weeks gestational age) were followed prospectively from birth, and studied with magnetic resonance imaging, 3-dimensional magnetic resonance spectroscopic imaging, and diffusion tensor imaging: scan 1 early in life (median, 32.1 weeks) and scan 2 at term-equivalent age (median, 40 weeks). We calculated N-acetylaspartate to choline ratios (NAA/choline), lactate to choline ratios, average diffusivity, and white matter fractional anisotropy (FA) from up to 7 white and 4 subcortical gray matter regions of interest. Procedural pain was quantified as the number of skin-breaking events from birth to term or scan 2. Data were
analyzed using generalized estimating equation modeling adjusting for clinical confounders such as illness severity, morphine exposure, brain injury, and surgery.
Results: After comprehensively adjusting for multiple clinical factors, greater neonatal procedural pain was associated with reduced white matter FA (b ¼ 0.0002, p ¼ 0.028) and reduced subcortical gray matter NAA/choline (b ¼ 0.0006, p ¼ 0.004). Reduced FA was predicted by early pain (before scan 1), whereas lower NAA/choline was predicted by pain exposure throughout the neonatal course, suggesting a primary and early effect on subcortical structures with secondary white matter changes.
Interpretation: Early procedural pain in very preterm infants may contribute to impaired brain development.
Resumo:
The main scope of this work was to evaluate the metabolic effects of anticancer agents (three conventional and one new) in osteosarcoma (OS) cells and osteoblasts, by measuring alterations in the metabolic profile of cells by nuclear magnetic resonance (NMR) spectroscopy metabolomics. Chapter 1 gives a theoretical framework of this work, beginning with the main metabolic characteristics that globally describe cancer as well as the families and mechanisms of action of drugs used in chemotherapy. The drugs used nowadays to treat OS are also presented, together with the Palladium(II) complex with spermine, Pd2Spm, potentially active against cancer. Then, the global strategy for cell metabolomics is explained and the state of the art of metabolomic studies that analyze the effect of anticancer agents in cells is presented. In Chapter 2, the fundamentals of the analytical techniques used in this work, namely for biological assays, NMR spectroscopy and multivariate and statistical analysis of the results are described. A detailed description of the experimental procedures adopted throughout this work is given in Chapter 3. The biological and analytical reproducibility of the metabolic profile of MG-63 cells by high resolution magic angle spinning (HRMAS) NMR is evaluated in Chapter 4. The metabolic impact of several factors (cellular integrity, spinning rate, temperature, time and acquisition parameters) on the 1H HRMAS NMR spectral profile and quality is analysed, enabling the definition of the best acquisition parameters for further experiments. The metabolic consequences of increasing number of passages in MG-63 cells as well as the duration of storage are also investigated. Chapter 5 describes the metabolic impact of drugs conventionally used in OS chemotherapy, through NMR metabolomics studies of lysed cells and aqueous extracts analysis. The results show that MG-63 cells treated with cisplatin (cDDP) undergo a strong up-regulation of lipid contents, alterations in phospholipid constituents (choline compounds) and biomarkers of DNA degradation, all associated with cell death by apoptosis. Cells exposed to doxorubicin (DOX) or methotrexate (MTX) showed much slighter metabolic changes, without any relevant alteration in lipid contents. However, metabolic changes associated with altered Krebs cycle, oxidative stress and nucleotides metabolism were detected and were tentatively interpreted at the light of the known mechanisms of action of these drugs. The metabolic impact of the exposure of MG-63 cells and osteoblasts to cDDP and the Pd2Spm complex is described in Chapter 6. Results show that, despite the ability of the two agents to bind DNA, the metabolic consequences that arise from exposure to them are distinct, namely in what concerns to variation in lipid contents (absent for Pd2Spm). Apoptosis detection assays showed that, differently from what was seen for MG-63 cells treated with cDDP, the decreased number of living cells upon exposure to Pd2Spm was not due to cell death by apoptosis or necrosis. Moreover, the latter agent induces more marked alterations in osteoblasts than in cancer cells, while the opposite seemed to occur upon cDDP exposure. Nevertheless, the results from MG-63 cells exposure to combination regimens with cDDP- or Pd2Spm-based cocktails, described in Chapter 7, revealed that, in combination, the two agents induce similar metabolic responses, arising from synergy mechanisms between the tested drugs. Finally, the main conclusions of this thesis are summarized in Chapter 8, and future perspectives in the light of this work are presented.
Resumo:
We used1H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 ± 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 ± 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123.7 ± 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 ± 3.6 mmol/kg dry wt) and Gast (28.5 ± 3.5 mmol/kg dry wt) were higher (P < 0.001 andP < 0.01, respectively) compared with TA (13.6 ± 2.4 mmol/kg dry wt). The IT values were found to be 44.8 ± 4.6 and 36.5 ± 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 ± 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 ± 11.2 (Sol), 119.1 ± 18.5 (Gast), and 91.4 ± 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.
Resumo:
Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier.
Resumo:
Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.
Resumo:
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.
Resumo:
Adult rats emit 22 kHz ultrasonic alann calls in aversive situations. This type of call
IS a component of defensive behaviour and it functions predominantly to warn
conspecifics about predators. Production of these calls is dependent on the central
cholinergic system. The laterodorsal tegmental nucleus (LDT) and pedunculopontine
tegmental nucleus (PPT) contain largely cholinergic neurons, which create a continuous
column in the brainstem. The LDT projects to structures in the forebrain, and it has been
implicated in the initiation of 22 kHz alarm calls. It was hypothesized that release of
acetylcholine from the ascending LDT terminals in mesencephalic and diencephalic areas
initiates 22 kHz alarm vocalization. Therefore, the tegmental cholinergic neurons should
be more active during emission of alarm calls. The aim of this study was to demonstrate
increased activity of LDT cholinergic neurons during emission of 22 kHz calls induced
by air puff stimuli. Immunohistochemical staining of the enzyme choline
acetyltransferase identified cell bodies of cholinergic neurons, and c-Fos immunolabeling
identified active cells. Double labeled cells were regarded as active cholinergic cells.
There were significantly more (p
Resumo:
Strain improvement of the insect pathogenic fungus Metarhizium anisopUae is necessary to increase its virulence towards agricultural pests and thus improve its commercial efficacy. Nevertheless, the release of genetically modified conidia in crop fields may negatively affect the ecosystem. Controlling conidiation is a potential means of limiting the release of engineered strains since conidia are the infective propagules and the means of dispersal. The purpose of this study was to research the colony development of M. anisopUae to identify potential targets for genetic manipulation to control conidiation. Following Agrobacterium tumefaciem insertional mutagenesis, phenotypic mutants were characterized using Y-shaped adaptor dependent extension PCR. Four of 1 8 colony development recombinants had T-DNA flanking sequences with high homology to genes encoding known signaling pathway proteins that regulate pathogenesis and/or asexual development in filamentous fungi. Conidial density counts and insect bioassays suggested that a Serine/Threonine protein kinase COTl homolog is not essential for conidiation or virulence. Furthermore, a choline kinase homolog is important for conidiation, but not virulence. Finally, the regulator of G protein signaling CAG8 and a NADPH oxidase NoxA homolog are necessary for conidiation and virulence. These genes are candidates for further investigation into the regulatory pathways controlling conidiation to yield insight into promising gene targets for biocontrol strain improvement.
Resumo:
An ascending cholinergic projection, which originates in the laterodorsal tegmental nucleus (LDT), was implicated in the initiation of ultrasonic vocalization. The goal of this study was to histochemically examine the activity the LDT following ultrasonic calls induced by two methods. It was hypothesized that cholinergic LDT cells would be more active during air puffinduced vocalization than carbachol-induced one. Choline acetyltransferase (ChAT), and cFos protein were visualized histochemically as markers of cholinergic calls and cellular activity, respectively. Results indicated that animals vocalizing after carbachol, but not after air puff, had a significantly higher number of Fos labeled nuclei within the LDT than non vocalizing controls. A significantly higher number of doublelabeled neurons were discovered in the LDT of vocalizing animals (in both groups) as compared to control conditions. Thus, there were significantly more active cholinergic cells in the LDT of vocalizing than non-vocalizing rats for both methods of call induction.
Resumo:
L’infertilité affecte jusqu’à 15-20% des couples en âge de se reproduire. C’est pourquoi, mieux comprendre les mécanismes à la base de la fécondation est essentiel pour l’identification de nouvelles causes d’infertilité et l’optimisation des techniques de reproduction assistée. La capacitation est une étape de la maturation des spermatozoïdes qui se déroule dans le tractus génital femelle. Elle est requise pour la fécondation d’un ovocyte. Notre laboratoire a démontré que des protéines du plasma séminal bovin, appelées protéines Binder of SPerm (BSP), se lient aux phospholipides portant des groupements choline à la surface de la membrane des spermatozoïdes lors de l’éjaculation et promeuvent la capacitation. Ces protéines exprimées par les vésicules séminales sont ubiquitaires chez les mammifères et ont été étudiées chez plusieurs espèces dont l’étalon, le porc, le bouc et le bélier. Récemment, l’expression de gènes homologues aux BSP a été découverte dans les épididymes d’humains (BSPH1) et de souris (Bsph1 et Bsph2). Notre hypothèse est que les BSP chez ces deux espèces sont ajoutées aux spermatozoïdes lors de la maturation épididymaire et ont des rôles dans les fonctions spermatiques, similaires à ceux des protéines BSP bovines. Les protéines BSP humaines et murines représentent une faible fraction des protéines totales du plasma séminal. Pour cette raison, afin d’étudier leurs caractéristiques biochimiques et fonctionnelles, des protéines recombinantes ont été produites. Les protéines recombinantes ont été exprimées dans des cellules Escherichia coli origami B(DE3)pLysS en utilisant un vecteur d’expression pET32a. Suivant la lyse cellulaire, les protéines ont été dénaturées avec de l’urée et purifiées par chromatographie d’affinité sur ions métalliques immobilisés. Une fois liées à la colonne, les protéines ont été repliées à l’aide d’un gradient d’urée décroissant avant d’être éluées. Cette méthode a mené à la production de trois protéines recombinantes (rec-BSPH1 humaine, rec-BSPH1 murine et rec-BSPH2 murine) pures et fonctionnelles. Des expériences de chromatographie d’affinité et de co-sédimentation nous ont permis de démontrer que les trois protéines peuvent se lier à des ligands connus des protéines BSP comme la gélatine et l’héparine en plus de pouvoir se lier aux spermatozoïdes. Nos études ont également révélées que les deux protéines rec-BSPH1 peuvent se lier aux liposomes de phosphatidylcholine (PC) et sont capable de promouvoir la capacitation des spermatozoïdes. À l’opposé, rec-BSPH2 ne peut ni se lier aux liposomes de PC, ni stimuler la capacitation. Finalement, les protéines recombinantes n’ont aucun effet sur la réaction acrosomique ou sur la motilité des spermatozoïdes. Chez les bovins, les protéines BSP induisent la capacitation grâce des interactions avec les lipoprotéines de haute densité (HDL) et les glycosaminoglycanes. Puisque le HDL est également un joueur important de la capacitation chez la souris, le rôle de la protéine native BSPH1 murine au niveau de la capacitation induite par le HDL a été étudié. Les résultats obtenus suggèrent que, in vivo, la protéine BSPH1 de souris serait impliquée dans la capacitation via une interaction directe avec le HDL. Comme les protéines BSPH1 humaines et murines sont orthologues, ces résultats pourraient aussi s’appliquer à la fertilité humaine. Les résultats présentés dans cette thèse pourraient mener à une meilleure compréhension de la fertilité masculine et aider à améliorer les techniques de reproduction assistée. Ils pourraient également mener au développement de nouveaux tests diagnostiques ou de contraceptifs masculins.
Resumo:
La phospholipase A2 liée aux lipoprotéines (Lp-PLA2) est une biomarqueur de plusieurs maladies inflammatoires et une niveau sérique élevé est associé à l’instabilité de la plaque artérioscléreuse. Comme son nom l’indique, la Lp-PLA2 est liée aux lipoprotéines plasmatiques (LDL et HDL) et son rôle est de prévenir l’accumulation de phospholipides oxidés a la surface des lipoprotéines. Toutefois, les produits de dégradation des phospholipides oxidés par la Lp-PLA2 - le lysophosphatidyl choline par les acides gras oxidés peuvent aussi promouvoir l’inflammation. Mieux comprendre le métabolisme de la Lp-PLA2 pourrait nous permettre de mieux apprécier son rôle dans la formation d’une plaque artérioscléreuse instable, car des études antérieures ont démontré une forte expression de la Lp-PLA2 dans la plaque. De plus, il existe une forte corrélation entre les niveaux et l’activité plasmatiques de la Lp-PLA2 et la maladie coronarienne, les accidents cérébraux-vasculaires et la mortalité cardiaque. L’inhibition de la Lp-PLA2 avec une petite molécule, le darapladib, n’a pas démontré de bénéfice sur les évènements cardiovasculaires dans deux études cliniques. Cette thèse présentera d’abord une revue de la littérature sur la Lp-PLA2 et les maladies cardiovasculaires et les deuxième et troisième chapitres, une étude clinique réalisée sur des patients avec un syndrome coronarien aigu.
Resumo:
In the present study, a detailed investigation on the alterations of muscarinic M1, M3, α7 nicotinic acetylcholine receptor (α7 nAchR), GABA receptors and its subtypes; GABAAα1 and GABAB in the brain regions of streptozotocin induced diabetic and insulin induced hypoglycemic rats were carried out. Gene expression of acetylcholine esterase (AChE), choline acetyltransferase (ChAT), GAD, GLUT3, Insulin receptor, superoxide dismutase (SOD), Bax protein, Phospholipase C and CREB in hypoglycemic and hyperglycemic rat brain were studied. Muscarinic M1, M3 receptors, AChE, ChAT, GABAAα1, GABAB, GAD, Insulin receptor, SOD, Bax protein and Phospholipase C expression in pancreas was also carried out. The molecular studies on the CNS and PNS damage will elucidate the therapeutic role in the corrective measures of the damage to the brain during hypoglycemia and hyperglycemia.
Resumo:
El Glioblastoma multiforme (GBM), es el tumor cerebral más frecuente, con pronóstico grave y baja sensibilidad al tratamiento inicial. El propósito de este estudio fue evaluar si la Difusión en RM (IDRM), es un biomarcador temprano de respuesta tumoral, útil para tomar decisiones tempranas de tratamiento y para obtener información pronostica. Metodología La búsqueda se realizo en las bases de datos EMBASE, CENTRAL, MEDLINE; las bibliografías también fueron revisadas. Los artículos seleccionados fueron estudios observacionales (casos y controles, cohortes, corte transversal), no se encontró ningún ensayo clínico; todos los participante tenían diagnostico histopatológico de GBM, sometidos a resección quirúrgica y/o radio-quimioterapia y seguimiento de respuesta al tratamiento con IDRM por al menos 6 meses. Los datos extraídos de forma independiente fueron tipo de estudio, participantes, intervenciones, seguimiento, desenlaces (sobrevida, progresión/estabilización de la enfermedad, muerte) Resultados Quince estudios cumplieron los criterios de inclusión. Entre las técnicas empleadas de IDRM para evaluar respuesta radiológica al tratamiento, fueron histogramas del coeficiente aparente de difusion ADC (compararon valores inferiores a la media y el percentil 10 de ADC, con los valores superiores); encontrando en términos generales que un ADC bajo es un fuerte predictor de sobrevida y/o progresión del tumor. (Esto fue significativo en 5 estudios); mapas funcionales de difusion (FDM) (midieron el porcentaje de cambio de ADC basal vs pos tratamiento) que mostro ser un fuerte predictor de sobrevida en pacientes con progresión tumoral. DISCUSION Desafortunadamente la calidad de los estudios fue intermedia-baja lo que hace que la aplicabilidad de los estudios sea limitada.