900 resultados para Ceramic coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modifications of surface materials and their effects on cleanability have important impacts in many fields of activity. In this study the primary aim was to develop radiochemical methods suitable for evaluating cleanability in material research for different environments. Another aim was to investigate the effects of surface modifications on cleanabilitity and surface properties of plastics, ceramics, concrete materials and also their coatings in conditions simulating their typical environments. Several new 51Cr and 14C labelled soils were developed for testing situations. The new radiochemical methods developed were suitable for examining different surface materials and different soil types, providing quantitative information about the amount of soil on surfaces. They also take into account soil soaked into surfaces. The supporting methods colorimetric determination and ATP bioluminescence provided semi-quantitative results. The results from the radiochemical and supporting methods partly correlated with each other. From a material research point of view numerous new materials were evaluated. These included both laboratory-made model materials and commercial products. Increasing the amount of plasticizer decreased the cleanability of poly(vinyl chloride) (PVC) materials. Microstructured surfaces of plastics improved the cleanability of PVC from particle soils, whereas for oil soil microstructuring reduced the cleanability. In the case of glazed ceramic materials, coatings affected the cleanability. The roughness of surfaces correlated with cleanability from particle soils and the cleanability from oil soil correlated with the contact angles. Organic particle soil was removed more efficiently from TiO2-coated ceramic surfaces after UV-radiation than without UV treatment, whereas no effect was observed on the cleanability of oil soil. Coatings improved the cleanability of concrete flooring materials intended for use in animal houses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a simple method of coating a semi-permanent phospholipid layer onto a capillary for electrochromatography use was the focus of this study. The work involved finding good coating conditions, stabilizing the phospholipid coating, and examining the effect of adding divalent cations, cetyltrimethylammonium bromide, and polyethylene glycol (PEG)-lipids on the stability of the coating. Since a further purpose was to move toward more biological membrane coatings, the capillaries were also coated with cholesterol-containing liposomes and liposomes of red blood cell ghost lipids. Liposomes were prepared by extrusion, and large unilamellar vesicles with a diameter of about 100 nm were obtained. Zwitterionic phosphatidylcholine (PC) was used as a basic component, mainly 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) but also eggPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Different amounts of sphingomyelin, bovine brain phosphatidylserine, and cholesterol were added to the PC. The stability of the coating in 40 mM N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES) solution at pH 7.4 was studied by measuring the electroosmotic flow and by separating neutral steroids, basic proteins, and low-molar-mass drugs. The presence of PC in the coating solution was found to be essential to achieving a coating. The stability of the coating was improved by the addition of negative phosphatidylserine, cholesterol, divalent cations, or PEGylated lipids, and by working in the gel-state region of the phospholipid. Study of the effect on the PC coating of divalent metal ions calcium, magnesium, and zinc showed a molar ratio of 1:3 PC/Ca2+ or PC/Mg2+ to give increased rigidity to the membrane and the best coating stability. The PEGylated lipids used in the study were sterically stabilized commercial lipids with covalently attached PEG chains. The vesicle size generally decreased when PEGylated lipids of higher molar mass were present in the vesicle. The predominance of discoidal micelles over liposomes increased PEG chain length and the average size of the vesicles thus decreased. In the capillary electrophoresis (CE) measurements a highly stable electroosmotic flow was achieved with 20% PEGylated lipid in the POPC coating dispersion, the best results being obtained for disteroyl PEG (3000) conjugates. The results suggest that smaller particles (discoidal micelles) result in tighter packing and better shielding of silanol groups on the silica wall. The effect of temperature on the coating stability was investigated by using DPPC liposomes at temperatures above (45 C) and below (25 C) the main phase transition temperature. Better results were obtained with DPPC in the more rigid gel state than in the fluid state: the electroosmotic flow was heavily suppressed and the PC coating was stabilized. Also dispersions of DPPC with 0−30 mol% of cholesterol and sphingomyelin in different ratios, which more closely resemble natural membranes, resulted in stable coatings. Finally, the CE measurements revealed that a stable coating is formed when capillaries are coated with liposomes of red blood cell ghost lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700 degrees C to 900 degrees C and methane gas concentration from 3% to 1.5%. It is found that the coefficient of friction of the coatings under high vacuum of 133.32 x 10(-7) Pa (10(-7) torr) with nanocrystalline grains can be manipulated to 0.35 to enhance tribological behaviour of bare Si substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reticulated porous Ti3AlC2 ceramic, a member of the MAX-phase family (Mn+1AXn phases, where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen), was prepared from the highly dispersed aqueous suspension by a replica template method. Through a cathodic electrogeneration method, nanocrystalline catalytic CeO2 coatings were deposited on the conductive porous Ti 3AlC2 supports. By adjusting the pH value and cathodic deposition current, coatings exhibiting nanocellar, nanosheets-like, or bubble-free morphologies can be obtained. This work expects to introduce a novel practically feasible material system and a catalytic coating preparation technique for gas exhaust catalyst devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on singlephase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5-15N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53-0.63 against AISI 52100 steel and between 0.51-0.56 against Si3N4 ceramic. We found thatwear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10-4mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-Y2Si2O7 is a promising candidate both for high temperature structural applications and as thermal barrier coatings due to its unique combination of properties, such as high melting point, good machinability, high thermal stability, low linear thermal expansion coefficient (3.9 × 10-6 K-1, 25-1400 °C) and low thermal conductivity (<3 W/m K above 300 °C). In this work, the hot corrosion behavior of γ-Y2Si2O7 in strongly basic Na2CO3 molten salt at 850-1000 °C for 20 h in flowing air was investigated. In the employed conditions, multi-layer corrosion scales with total thickness less than 90 μm were formed. At 850-900 °C, the outmost layer of the scale was composed of the reprecipitation of Y2O3, the bottom of a Si-rich Na2O·xSiO2 (x > 3.65) melt layer, and the middle of a NaYSiO4 layer. At 1000 °C, the corrosion products turned out to be a mixture of NaY9Si6O26 and Si-rich Na2O·xSiO2 (x > 3.65). In all cases, a thin layer of protective SiO2 formed under the Na2O·xSiO2 melt and protected the bulk material from further corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mechanical properties of bulk single-phase γ-Y2Si2O7 ceramic are reported. γ-Y2Si2O7 exhibits low shear modulus, excellent damage tolerance, and thus has a good machinability ready for metal working tools. To understand the underlying mechanism of machinability, drilling test, Hertzian contact test, and density functional theory (DFT) calculation are employed. Hertzian contact test demonstrates that γ-Y2Si2O7 is a "quasi-plastic" ceramic and the intrinsically weak interfaces contribute to its machinability. Crystal structure characteristics and DFT calculations of γ-Y2Si2O7 suggest that some weakly bonded planes, which involve Y-O bonds that can be easily broken, are the sources of the low shear deformation resistance and good machinability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM) strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh) and energy demand (kW). The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple ARC designs for germanium (Ge) optics useful in spaceborne electro-optical systems have been generated. It is seen that the designs which are non-quarterwave in nature are efficient in terms of spectral coverage and residual reflection loss. They have been realised experimentally and the resulting ARCs are found to have very good spectral and durability properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.