985 resultados para Cdna clones
Resumo:
Tumor-induced osteomalacia (TIO) is one of the paraneoplastic diseases characterized by hypophosphatemia caused by renal phosphate wasting. Because removal of responsible tumors normalizes phosphate metabolism, an unidentified humoral phosphaturic factor is believed to be responsible for this syndrome. To identify the causative factor of TIO, we obtained cDNA clones that were abundantly expressed only in a tumor causing TIO and constructed tumor-specific cDNA contigs. Based on the sequence of one major contig, we cloned 2,270-bp cDNA, which turned out to encode fibroblast growth factor 23 (FGF23). Administration of recombinant FGF23 decreased serum phosphate in mice within 12 h. When Chinese hamster ovary cells stably expressing FGF23 were s.c. implanted into nude mice, hypophosphatemia with increased renal phosphate clearance was observed. In addition, a high level of serum alkaline phosphatase, low 1,25-dihydroxyvitamin D, deformity of bone, and impairment of body weight gain became evident. Histological examination showed marked increase of osteoid and widening of growth plate. Thus, continuous production of FGF23 reproduced clinical, biochemical, and histological features of TIO in vivo. Analyses for recombinant FGF23 products produced by Chinese hamster ovary cells indicated proteolytic cleavage of FGF23 at the RXXR motif. Recent genetic study indicates that missense mutations in this RXXR motif of FGF23 are responsible for autosomal dominant hypophosphatemic rickets, another hypophosphatemic disease with similar features to TIO. We conclude that overproduction of FGF23 causes TIO, whereas mutations in the FGF23 gene result in autosomal dominant hypophosphatemic rickets possibly by preventing proteolytic cleavage and enhancing biological activity of FGF23.
Resumo:
The nucellus is a complex maternal grain tissue that embeds and feeds the developing cereal endosperm and embryo. Differential screening of a barley (Hordeum vulgare) cDNA library from 5-d-old ovaries resulted in the isolation of two cDNA clones encoding nucellus-specific homologs of the vacuolar-processing enzyme of castor bean (Ricinus communis). Based on the sequence of these barley clones, which are called nucellains, a homolog from developing corn (Zea mays) grains was also identified. In dicots the vacuolar-processing enzyme is believed to be involved in the processing of vacuolar storage proteins. RNA-blot and in situ-hybridization analyses detected nucellain transcripts in autolysing nucellus parenchyma cells, in the nucellar projection, and in the nucellar epidermis. No nucellain transcripts were detected in the highly vacuolate endosperm or in the other maternal tissues of developing grains such as the testa or the pericarp. Using an antibody raised against castor bean vacuolar-processing protease, a single polypeptide was recognized in protein extracts from barley grains. Immunogold-labeling experiments with this antibody localized the nucellain epitope not in the vacuoles, but in the cell walls of all nucellar cell types. We propose that nucellain plays a role in processing and/or turnover of cell wall proteins in developing cereal grains.
Resumo:
We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249–8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mm NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.
Resumo:
The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.
Resumo:
Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.
Resumo:
Two cDNA clones encoding endo-β-1,4-glucanases (EGases) were isolated from a radiata pine (Pinus radiata) cDNA library prepared from immature female strobili. The cDNAs PrCel1 (Pinus radiata cellulase 1) and PrCel2 encode proteins 509 and 515 amino acids in length, respectively, including putative signal peptides. Both proteins contain domains conserved in plant and bacterial EGases. The proteins PRCEL1 and PRCEL2 showed strong similarity to each other (76% amino acid identity), and higher similarity to TPP18 (73 and 67%, respectively), an EGase cloned from tomato (Lycopersicon esculentum) pistils, than to any other reported EGases. Northern-blot analyses indicated that both genes displayed a similar pattern of expression. The only significant difference was in the level of expression. In situ hybridizations were used to demonstrate that, within differentiating pine reproductive structures, PrCel1 expression was greatest in microsporangia in pollen strobili and near the developing ovule in the seed strobili. Expression was also found in vegetative tissues, especially in regions experiencing cell elongation, such as the elongating region of root tips. Both proteins have an ability to degrade carboxymethylcellulose in vitro. Genomic-blot analysis indicated the presence of a family of EGase genes in the radiata pine genome, and that PrCel1 and PrCel2 are transcribed from distinct one-copy genes.
Resumo:
Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al.
Resumo:
In tetrapods, only one gene encoding a somatostatin precursor has been identified so far. The present study reports the characterization of the cDNA clones that encode two distinct somatostatin precursors in the brain of the frog Rana ridibunda. The cDNAs were isolated by using degenerate oligonucleotides based on the sequence of the central region of somatostatin to screen a frog brain cDNA library. One of the cDNAs encodes a 115-amino acid protein (prepro-somatostatin-14; PSS1) that exhibits a high degree of structural similarity with the mammalian somatostatin precursor. The other cDNA encodes a 103-amino acid protein (prepro-[Pro2, Met13]somatostatin-14; PSS2) that contains the sequence of the somatostatin analog (peptide SS2) at its C terminus, but does not exhibit appreciable sequence similarity with PSS1 in the remaining region. In situ hybridization studies indicate differential expression of the PSS1 and PSS2 genes in the septum, the lateral part of the pallium, the amygdaloid complex, the posterior nuclei of the thalamus, the ventral hypothalamic nucleus, the torus semicircularis and the optic tectum. The somatostatin variant SS2 was significantly more potent (4-6 fold) than somatostatin itself in displacing [125I-Tyr0, D-Trp8] somatostatin-14 from its specific binding sites. The present study indicates that the two somatostatin variants could exert different functions in the frog brain and pituitary. These data also suggest that distinct genes encoding somatostatin variants may be expressed in the brain of other tetrapods.
Resumo:
In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.
Resumo:
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.
Resumo:
We have isolated a new Drosophila mutant, satori (sat), the males of which do not court or copulate with female flies. The sat mutation comaps with fruitless (fru) at 91B and does not rescue the bisexual phenotype of fru, indicating that sat is allelic to fru (fru(sat)). The fru(sat) adult males lack a male-specific muscle, the muscle of Lawrence, as do adult males with other fru alleles. Molecular cloning and analyses of the genomic and complementary DNAs indicated that transcription of the fru locus yields several different transcripts. The sequence of fru cDNA clones revealed a long open reading frame that potentially encodes a putative transcription regulator with a BTB domain and two zinc finger motifs. In the 5' noncoding region, three putative transformer binding sites were identified in the female transcript but not in male transcripts. The fru gene is expressed in a population of brain cells, including those in the antennal lobe, that have been suggested to be involved in determination of male sexual orientation. We suggest that fru functions downstream of tra in the sex-determination cascade in some neural cells and that inappropriate sexual development of these cells in the fru mutants results in altered sexual orientation of the fly.
Resumo:
Regulation of gene expression through alternative pre-mRNA splicing appears to occur in all metazoans, but most of our knowledge about splicing regulators derives from studies on genetically identified factors from Drosophila. Among the best studied of these is the transformer-2 (TRA-2) protein which, in combination with the transformer (TRA) protein, directs sex-specific splicing of pre-mRNA from the sex determination gene doublesex (dsx). Here we report the identification of htra-2 alpha, a human homologue of tra-2. Two alternative types of htra-2 alpha cDNA clones were identified that encode different protein isoforms with striking organizational similarity to Drosophila tra-2 proteins. When expressed in flies, one hTRA-2 alpha isoform partially replaces the function of Drosophila TRA-2, affecting both female sexual differentiation and alternative splicing of dsx pre-mRNA. Like Drosophila TRA-2, the ability of hTRA-2 alpha to regulate dsx is female-specific and depends on the presence of the dsx splicing enhancer. These results demonstrate that htra-2 alpha has conserved a striking degree of functional specificity during evolution and leads us to suggest that, although they are likely to serve different roles in development, the tra-2 products of flies and humans have similar molecular functions.
Resumo:
Bone morphogenic protein-1 (BMP-1) was originally identified as one of several BMPs that induced new bone formation when implanted into ectopic sites in rodents. BMP-1, however, differed from other BMPs in that it its structure was not similar to transforming growth factor beta. Instead, it had a large domain homologous to a metalloendopeptidase isolated from crayfish, an epidermal growth-factor-like domain, and three regions of internal sequence homology referred to as CUB domains. Therefore, BMP-1 was a member of the "astacin families" of zinc-requiring endopeptidases. Many astacins have been shown to play critical roles in embryonic hatching, dorsal/ventral patterning, and early developmental decisions. Here, we have obtained amino acid sequences and isolated cDNA clones for procollagen C-proteinase (EC 3.4.24.19), an enzyme that is essential for the processing of procollagens to fibrillar collagens. The results demonstrate that procollagen C-proteinase is identical to BMP-1.
Resumo:
The genetic study of RNA viruses is greatly facilitated by the availability of infectious cDNA clones. However, their construction has often been difficult. While exploring ways to simplify the construction of infectious clones, we have successfully modified and applied the newly described technique of "long PCR" to the synthesis of a full-length DNA amplicon from the RNA of a cytopathogenic mutant (HM 175/24a) of the hepatitis A virus (HAV). Primers were synthesized to match the two extremities of the HAV genome. The antisense primer, homologous to the 3' end, was used in both the reverse transcription (RT) and the PCR steps. With these primers we reproducibly obtained a full-length amplicon of approximately 7.5 kb. Further, since we engineered a T7 promoter in the sense primer, RNA could be transcribed directly from the amplicon with T7 RNA polymerase. Following transfection of cultured fetal rhesus kidney cells with the transcription mixture containing both the HAV cDNA and the transcribed RNA, replicating HAV was detected by immunofluorescence microscopy and, following passage to other cell cultures, by focus formation. The recovered virus displayed the cytopathic effect and large plaque phenotype typical of the original virus; this result highlights the fidelity of the modified long reverse transcription-PCR procedure and demonstrates the potential of this method for providing cDNAs of viral genomes and simplifying the construction of infectious clones.
Resumo:
For mammals beta2-microglobulin (beta2m), the light chain of major histocompatibility complex (MHC) class I molecules, is invariant (or highly conserved) and is encoded by a single gene unlinked to the MHC. We find that beta2m of a salmonid fish, the rainbow trout (Oncorhynchus mykiss), does not conform to the mammalian paradigm. Ten of 12 randomly selected beta2m cDNA clones from an individual fish have different nucleotide sequences. A complex restriction fragment length polymorphism pattern is observed with rainbow trout, suggesting multiple beta2m genes in the genome, in excess of the two genes expected from the ancestral salmonid tetraploidy. Additional duplication and diversification of the beta2m genes might have occurred subsequently. Variation in the beta2m cDNA sequences is mainly at sites that do not perturb the structure of the mature beta2m protein, showing that the observed diversity of the trout beta2m genes is not primarily a result of pathogen selection.