917 resultados para Causal loops
Resumo:
A sample of 99 children completed a causal learning task that was an analogue of the food allergy paradigm used with adults. The cue competition effects of blocking and unovershadowing were assessed under forward and backward presentation conditions. Children also answered questions probing their ability to make the inference posited to be necessary for blocking by a reasoning account of cue competition. For the first time, children's working memory and general verbal ability were also measured alongside their causal learning. The magnitude of blocking and unovershadowing effects increased with age. However, analyses showed that the best predictor of both blocking and unovershadowing effects was children's performance on the reasoning questions. The magnitude of the blocking effect was also predicted by children's working memory abilities. These findings provide new evidence that cue competition effects such as blocking are underpinned by effortful reasoning processes.
Resumo:
Base rate neglect on the mammography problem can be overcome by explicitly presenting a causal basis for the typically vague false-positive statistic. One account of this causal facilitation effect is that people make probabilistic judgements over intuitive causal models parameterized with the evidence in the problem. Poorly defined or difficult-to-map evidence interferes with this process, leading to errors in statistical reasoning. To assess whether the construction of parameterized causal representations is an intuitive or deliberative process, in Experiment 1 we combined a secondary load paradigm with manipulations of the presence or absence of an alternative cause in typical statistical reasoning problems. We found limited effects of a secondary load, no evidence that information about an alternative cause improves statistical reasoning, but some evidence that it reduces base rate neglect errors. In Experiments 2 and 3 where we did not impose a load, we observed causal facilitation effects. The amount of Bayesian responding in the causal conditions was impervious to the presence of a load (Experiment 1) and to the precise statistical information that was presented (Experiment 3). However, we found less Bayesian responding in the causal condition than previously reported. We conclude with a discussion of the implications of our findings and the suggestion that there may be population effects in the accuracy of statistical reasoning.
Resumo:
People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430–450, 2007) proposed that a causal Bayesian framework accounts for peoples’ errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.
Resumo:
We explored the development of sensitivity to causal relations in children’s inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey → predator) or diagnostic (predator → prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children’s inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning.
Resumo:
Three experiments examined children’s and adults’ abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a three-variable mechanical system that operated probabilistically. Participants of all ages preferentially relied on the temporal pattern of events in their inferences, even if this conflicted with statistical information. In Experiments 2 and 3, participants observed a series of interventions on the system, which in these experiments operated deterministically. In Experiment 2, participants found it easier to use temporal pattern information than statistical information provided as a result of interventions. In Experiment 3, in which no temporal pattern information was provided, children from 6-7 years, but not younger children, were able to use intervention information to make causal chain judgments, although they had difficulty when the structure was a common cause. The findings suggest that participants, and children in particular, may find it more difficult to use statistical information than temporal pattern information because of its demands on information processing resources. However, there may also be an inherent preference for temporal information.
Resumo:
Traditionally, audio-motor timing processes have been understood as motor output from an internal clock, the speed of which is set by heard sound pulses. In contrast, this paper proposes a more ecologically-grounded approach, arguing that audio-motor processes are better characterized as performed actions on the perceived structure of auditory events. This position is explored in the context of auditory sensorimotor synchronization and continuation timing. Empirical research shows that the structure of sounds as auditory events can lead to marked differences in movement timing performance. The nature of these effects is discussed in the context of perceived action-relevance of auditory event structure. It is proposed that different forms of sound invite or support different patterns of sensorimotor timing. Hence, the temporal information in looped auditory signals is more than just the interval durations between onsets: all metronomes are not created equal. The potential implications for auditory guides in motor performance enhancement are also described.
Resumo:
This letter presents the design of a thin microwave absorber which exhibits a -10 dB reflectivity bandwidth of 108% at normal incidence and 16% for simultaneous suppression of TE and TM polarised waves over the angular range 0-45° is presented. The structure consists of a 3 mm-thick metal backed frequency selective surface (FSS) with four resistively loaded hexagonal loop elements in each unit cell. The surface resistivity and width of the loops are carefully chosen to maximise the bandwidth by merging the reflection nulls that are generated by the multi-resonant absorber. Measurement and simulation results are in good agreement over the broad frequency range 7.8-24 GHz.
Resumo:
Obesity has been posited as an independent risk factor for diabetic kidney disease (DKD), but establishing causality from observational data is problematic. We aimed to test whether obesity is causally related to DKD using Mendelian randomization, which exploits the random assortment of genes during meiosis. In 6,049 subjects with type 1 diabetes, we used a weighted genetic risk score (GRS) comprised of 32 validated BMI loci as an instrument to test the relationship of BMI with macroalbuminuria, end-stage renal disease (ESRD), or DKD defined as presence of macroalbuminuria or ESRD. We compared these results with cross-sectional and longitudinal observational associations. Longitudinal analysis demonstrated a U-shaped relationship of BMI with development of macroalbuminuria, ESRD, or DKD over time. Cross-sectional observational analysis showed no association with overall DKD, higher odds of macroalbuminuria (for every 1 kg/m(2) higher BMI, odds ratio [OR] 1.05, 95% CI 1.03-1.07, P < 0.001), and lower odds of ESRD (OR 0.95, 95% CI 0.93-0.97, P < 0.001). Mendelian randomization analysis showed a 1 kg/m(2) higher BMI conferring an increased risk in macroalbuminuria (OR 1.28, 95% CI 1.11-1.45, P = 0.001), ESRD (OR 1.43, 95% CI 1.20-1.72, P < 0.001), and DKD (OR 1.33, 95% CI 1.17-1.51, P < 0.001). Our results provide genetic evidence for a causal link between obesity and DKD in type 1 diabetes. As obesity prevalence rises, this finding predicts an increase in DKD prevalence unless intervention should occur.
Resumo:
We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min–1 and 0.7 min–1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops
Resumo:
ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.
Resumo:
Evidence has accumulated of high temperature (> 4 MK) coronal emission in active region cores that corresponds to structures in equilibrium. Other studies have found evidence of evolving loops. We investigate the EUV intensity and temperature variations of short coronal loops observed in the core of NOAA Active Region 11250 on 13 July 2011. The loops, which run directly between the AR opposite polarities, are first detectable in the 94Å band of Fe XVIII, implying an effective temperature ~ 7 MK. The low temperature component of the 94 Å signal is modeled in terms of a linear superposition of the 193 Å and 171 Å signals in order to separate the hot component. After identifying the loops we have used contemporaneous HMI observations to identify the corresponding inter-moss regions, and we have investigated their time evolution in six AIA EUV channels. The results can be separated into two classes. Group 1 (94Å, 335Å, 211Å) is characterized by hotter temperatures (~2-7 MK), and Group 2 (193Å, 171Å, 131Å) by cooler temperatures (0.4 - 1.6 MK). For Group 1 the intensity peaks in the 94Å channel are followed by maxima in the 335 Å channel with a time lag of ~8 min, suggestive of a cooling pattern with an exponential decay. While the 211Å maxima follow those in the 335 Å channel, there is no systematic relation which would indicate a progressive cooling process through the lower temperatures, as has been observed in other investigations. In Group 2 the signals in the 171 and 131Å channels track each other closely, and lag behind the 193Å. In the inter-moss region of the loop the peak temperature and peak emission measure have opposite trends. The hot 94Å brightenings occur in the central part of the loops with maximum temperatures ~7 MK. Subsequently the loops appear to fill with plasma with an emission measure compatible with the 193 Å signal and temperature in the range ~ 1.5-2 MK. Although the exact details of the time evolution are still under investigation, these non static loops show high levels of intermittency in the 94Å signal (please see poster "Intermittent and Scale-Invariant Intensity Fluctuations in Hot Coronal Loops," by Lawrence et al. in this session).
Resumo:
Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
Resumo:
Children aged between 5 and 8 years freely intervened on a three-variable causal system, with their task being to discover whether it was a common-cause structure or one of two causal chains. From 6-7 years, children were able to use information from their interventions to correctly disambiguate the structure of a causal chain. We used a Bayesian model to examine children’s interventions on the system; this showed that with development children became more efficient in producing the interventions needed to disambiguate the causal structure and that the quality of interventions, as measured by their informativeness, improved developmentally. The latter measure was a significant predictor of children’s correct inferences about the causal structure. A second experiment showed that levels of performance were not reduced in a task in which children did not select and carry out interventions themselves, indicating no advantage for self-directed learning. However, children’s performance was not related to intervention quality in these circumstances, suggesting that children learn in a different way when they carry out interventions themselves.
Resumo:
Americans have been shown to attribute greater intentionality to immoral than to amoral actions in cases of causal deviance, that is, cases where a goal is satisfied in a way that deviates from initially planned means (e.g., a gunman wants to hit a target and his hand slips, but the bullet ricochets off a rock into the target). However, past research has yet to assess whether this asymmetry persists in cases of extreme causal deviance. Here, we manipulated the level of mild to extreme causal deviance of an immoral versus amoral act. The asymmetry in attributions of intentionality was observed at all but the
most extreme level of causal deviance, and, as we hypothesized, was mediated by attributions of Blame/credit and judgments of action performance. These findings are discussed as they support a multiple-concepts interpretation of the asymmetry, wherein blame renders a naïve concept of intentional action (the outcome matches the intention) more salient than a composite concept (the outcome matches the intention and was brought about by planned means), and in terms of their implications for cross-cultural research on judgments of agency.