918 resultados para Caspase-3


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. Methods: A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step-gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. Results: Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 mu g/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50: 50) and showed IC50 at 91 mu g/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. Conclusions: Our study therefore demonstrates presence of anticancer and anti-HPV an activity in B. pinnata leaves that can be further exploited as a potential anticancer, anti-HPV therapeutic for treatment of HPV infection and cervical cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S.typhimurium). Significant death of CD4+CD8+ thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4+CD8+ thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon- (IFN-), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifn/ mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN- and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifn/ mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifn/ mice. Importantly, the number of CD4+CD8+ thymocytes is significantly higher in Ifn/ mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN--mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S.typhimurium infection. The implications of this study for host responses during infection are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abrin obtained from the plant Abrus precatorius inhibits protein synthesis and also triggers apoptosis in cells. Previous studies from our laboratory suggested a link between these two events. Using an active site mutant of abrin A-chain which exhibits 225-fold lower protein synthesis inhibitory activity than the wild-type abrin A-chain, we demonstrate in this study that inhibition of protein synthesis induced by abrin is the major factor triggering unfolded protein response leading to apoptosis. Since abrin A-chain requires the B-chain for internalization into cells, the wild-type and mutant recombinant abrin A-chains were conjugated to native ricin B-chain to generate hybrid toxins, and the toxic effects of the two conjugates were compared. The rate of inhibition of protein synthesis mediated by the mutant ricin B-rABRA (R167L) conjugate was slower than that of the wild-type ricin B-rABRA conjugate as expected. The mutant conjugate activated p38MAPK and caspase-3 similar to its wild-type counterpart although at later time points. Overall, these results confirm that inhibition of protein synthesis is the major event contributing to abrin-mediated apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA minor groove binders are an important class of chemotherapeutic agents. These small molecule inhibitors interfere with various cellular processes like DNA replication and transcription. Several benzimidazole derivatives showed affinity towards the DNA minor groove. In this study we show the synthesis and biological studies of a novel benzimidazole derivative (MH1), that inhibits topoisomerase II activity and in vitro transcription. UV-visible and fluorescence spectroscopic methods in conjunction with Hoechst displacement assay demonstrate that MH1 binds to DNA at the minor groove. Cytotoxic studies showed that leukemic cells are more sensitive to MH1 compared to cancer cells of epithelial origin. Further, we find that MH1 treatment leads to cell cycle arrest at G2/M, at early time points in Molt4 cells. Finally multiple cellular assays demonstrate that MH1 treatment leads to reduction in MMP, induction of apoptosis by activating CASPASE 9 and CASPASE 3. Thus our study shows MH1, a novel DNA minor groove binder, induces cytotoxicity efficiently in leukemic cells by activating the intrinsic pathway of apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste estudo investigamos as consequências da restrição protéica materna durante a lactação sobre a resposta de timócitos da prole jovem de ratos Wistar (grupo D), identificando o papel da leptina nas alterações encontradas. Observamos que, quando comparados ao grupo controle, os animais do grupo D apresentaram, aos 30 dias de vida, uma diminuição significativa tanto do peso corporal quanto do timo. Contudo, não observamos alterações no número de timócitos, no perfil de células CD4/CD8 ou na resposta proliferativa destas células. Sistemicamente, o grupo D não apresentou alterações nos níveis séricos de corticosterona ou no conteúdo nuclear do seu receptor (GR) em timócitos. Apesar dos animais D não apresentarem alterações nos níveis circulantes de leptina, a expressão do seu receptor, ObRb, estava aumentada nos timócitos. Esta alteração foi acompanhada pela amplificação da resposta de sinalização da leptina nestas células, observada por um aumento na ativação de JAK2 e STAT3 após a incubação com leptina. Os timócitos isolados do grupo D apresentaram uma diminuição significativa na taxa de apoptose espontânea quando comparados ao grupo controle. Corroborando estes resultados, demonstramos que os timócitos dos animais D apresentam um aumento na expressão da proteína antiapoptótica Bcl-2 e uma redução da expressão da proteína próapoptótica Bax, além de um maior conteúdo de Pró-caspase-3, entretanto, não encontramos alterações no conteúdo de Bad. Além disso, timócitos do grupo D apresentaram um maior conteúdo da subunidade p65 do NFĸB no núcleo, associado a uma menor expressão de IĸBα no citoplasma. Finalmente, observamos um aumento na expressão do RNAm para o gene ob (leptina) mas não para o gene db (receptor) no microambiente tímico dos animais D. Em conjunto, nossos dados mostram que a restrição protéica durante a lactação afeta a homeostase tímica, induzindo uma maior atividade de leptina, que protege os timócitos da apoptose na prole jovem, sugerindo que esses animais poderiam ser mais suscetíveis a alterações na resposta imune na vida aduta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fibrose hepática é o resultado de uma resposta cicatrizante frente a repetidas lesões no fígado, e é caracterizada pelo acúmulo excessivo de proteínas da matriz extracelular (MEC) no parênquima hepático, incluindo colágeno, fibronectina, elastina, laminina e proteoglicanos, com a participação de diferentes populações celulares do fígado. As principais células responsáveis pela síntese de proteínas da MEC na fibrose hepática são as células estreladas hepáticas ativadas e os miofibroblastos, que surgem após estímulo inflamatório e são caracterizadas pela expressão de alfa-actina de músculo liso (α-SMA). Sabe-se que durante a progressão da fibrose hepática, ocorre a morte de hepatócitos e sua substituição por células fibrogênicas α-SMA+. A apoptose dessas células fibrogênicas é de grande relevância para a regressão da fibrose e regeneração hepática. Nos últimos anos, a terapia com células tronco de medula óssea tem sido utilizada para estimular a regeneração hepática em diferentes modelos experimentais e protocolos clínicos. A fração mononuclear da medula óssea adulta possui duas populações de células-tronco importantes no tratamento de diversas doenças hepáticas: células-tronco hematopoiéticas e células-tronco mesenquimais. O objetivo deste estudo foi analisar a expressão de α-SMA e o processo de apoptose de células hepáticas durante a fibrose hepática induzida por ligadura do ducto biliar (LDB) e após o transplante de células mononucleares de medula óssea (CMMO). Os fígados foram coletados de ratos dos seguintes grupos: normal, 14 dias de LDB, 21 dias de LDB e animais que receberam CMMO após 14 dias de LDB, e foram analisados após 7 dias (totalizando 21 dias de LDB). Para quantificar a expressão de α-SMA por células fibrogênicas nos grupos experimentais, foi realizada imunoperoxidase para α-SMA, seguida de morfometria no programa Image Pro Plus. Para analisar a apoptose nas células hepáticas, foi realizada imunoperoxidase e Western Blotting (WB) para caspase-3 (proteína apoptótica) e imunofluorescência com dupla-marcação para caspase-3 e α-SMA, seguida de observação em microscópio confocal. Os resultados da quantificação de α-SMA por morfometria mostraram que a expressão de α-SMA aumentou significativamente 14 e 21 dias após a LDB. Entretanto, essa expressão diminuiu significativamente no grupo tratado com CMMO, que apresentou parênquima hepático mais preservado em relação ao grupo com 21 dias de LDB. Os resultados de imunoperoxidase, WB e microscopia confocal para expressão de caspase-3 demonstraram que essa proteína diminuiu nos animais fibróticos com 14 e 21 dias de LDB com relação ao grupo normal, e estava significativamente elevada no grupo tratado com CMMO. A análise por microscopia confocal demonstrou que algumas células coexpressaram α-SMA e caspase-3 nos animais tratados com CMMO, sugerindo a morte de células fibrogênicas e remodelamento do parênquima hepático.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estreptococos do grupo B (EGB) é a principal causa de sepse e meningite neonatal e tem sido recentemente reconhecido como patógeno responsável por infecções invasivas em adultos imunocomprometidos (idosos ou portadores de doenças crônicas). Os EGB produzem inúmeras enzimas extracelulares, várias das quais interagem com o sistema imune do hospedeiro e são importantes durante a interação EGB-hospedeiro, bem como para o desenvolvimento da doença. Estudos anteriores mostraram que metaloproteases estão envolvidas em várias vias metabólicas em diferentes tipos celulares. Por esta razão, nós decidimos investigar o possível envolvimento de metaloproteases de EGB durante a interação celular e apoptose/necrose induzida pelo micro-organismo em células endoteliais da veia umbilical humana (HUVEC) e da linhagem de epitélio respiratório (A549). Tratamento de EGB com inibidores de metaloproteases (EDTA, EGTA e FEN) não induziu alterações no crescimento bacteriano, mas promoveu alterações na expressão de proteínas de superfície, capacidade adesiva e perfil de sobrevivência intracelular do patógeno. O EGB e o sobrenadante do crescimento bacteriano (meio condicionado; MC) promoveram a morte das células HUVEC e A549. Contudo, o tratamento com inibidores de metaloproteases restauraram a viabilidade celular induzida pelos EGB e o MC, sugerindo que metaloproteases bacteriana estão envolvidas no rompimento da barreira celular, promovendo a disseminação bacteriana. Este trabalho descreve pela primeira vez apoptose e necrose induzidas pelo EGB e MC em HUVEC e células A549 após 24h de incubação, respectivamente. Nós também observamos redução da pró-caspase-3 após infecção das HUVEC com EGB e MC, sugerindo ativação da caspase-3. Além disso, o aumento da expressão da proteína pró-apoptótica Bax e diminuição dos níveis da proteína anti-apoptótica Bcl-2 em HUVEC, demonstram o envolvimento do mecanismo apoptótico mitocondrial (via intrínseca). A melhor compreensão das bases moleculares da patogênese do EGB contribui para identificar novas moléculas bacterianas e hospedeiras que podem representar novos alvos terapêuticos ou imunoprofiláticos contra a doença causada por esse patógeno neonatal.