952 resultados para Carrier-envelope phase control
Resumo:
In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11–1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle.
Resumo:
Vaccinia virus (VV) produces two antigenically and structurally distinct infectious virions, intracellular mature virus (IMV) and extracellular enveloped virus (EEV). Here we have investigated the resistance of EEV and IMV to neutralization by complement in the absence of immune antibodies. When EEV is challenged with complement from the same species as the cells used to grow the virus, EEV is resistant to neutralization by complement, whereas IMV is not. EEV resistance was not a result of EEV protein B5R, despite its similarity to proteins of the regulators of complement activation (RCA) family, or to any of the other EEV proteins tested (A34R, A36R, and A56R gene products). EEV was sensitive to complement when the virus was grown in one species and challenged with complement from a different species, suggesting that complement resistance might be mediated by host RCA incorporated into the EEV outer envelope. This hypothesis was confirmed by several observations: (i) immunoblot analysis revealed that cellular membrane proteins CD46, CD55, CD59, CD71, CD81, and major histocompatibility complex class I antigen were detected in purified EEV but not IMV; (ii) immunoelectron microscopy revealed cellular RCA on the surface of EEV retained on the cell surface; and (iii) EEV derived from rat cells expressing the human RCA CD55 or CD55 and CD59 were more resistant to human complement than EEV derived from control rat cells that expressed neither CD55 nor CD59. These data justify further analysis of the roles of these (and possible other) cellular proteins in EEV biology.
Resumo:
Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.
Resumo:
Transgenic mice expressing the sequences coding for the envelope proteins of the hepatitis B virus (HBV) in the liver have been used as a model of the HBV chronic carrier state. We evaluated the possibility of inducing a specific immune response to the viral envelope antigens and thus potentially controlling chronic HBV infection. Using HBV-specific DNA-mediated immunization in this transgenic model, we show that the immune response induced after a single intramuscular injection of DNA resulted in the complete clearance of circulating hepatitis B surface antigen and in the long-term control of transgene expression in hepatocytes. This response does not involve a detectable cytopathic effect in the liver. Adoptive transfer of fractionated primed spleen cells from DNA-immunized mice shows that T cells are responsible for the down-regulation of HBV mRNA in the liver of transgenic mice. To our knowledge, this is the first demonstration of a potential immunotherapeutic application of DNA-mediated immunization against an infectious disease and raises the possibility of designing more effective ways of treating HBV chronic carriers.
Resumo:
Since concomitant release of structurally related peptide hormones with apparently similar functions seems to be a general concept in endocrinology, we have studied the dynamics of the lifetime of the three known adipokinetic hormones (AKHs) of the migratory locust, which control flight-directed mobilization of carbohydrate and lipid from fat body stores. Although the structure of the first member of the AKHs has been known for 20 years, until now, reliable data on their inactivation and removal from the hemolymph are lacking, because measurement requires AKHs with high specific radioactivity. Employing tritiated AKHs with high specific radioactivity, obtained by catalytic reduction with tritium gas of the dehydroLeu2 analogues of the AKHs synthesized by the solid-phase procedure, studies with physiological doses of as low as 1.0 pmol per locust could be conducted. The AKHs appear to be transported in the hemolymph in their free forms and not associated with a carrier protein, despite their strong hydrophobicity. Application of AKHs in their free form in in vivo and in vitro studies therefore now has been justified. We have studied the degradation of the three AKHs during rest and flight. The first cleavage step by an endopeptidase is crucial, since the resulting degradation products lack any adipokinetic activity. Half-lives for AKH-I, -II and -III were 51, 40, and 5 min, respectively, for rest conditions and 35, 37, and 3 min, respectively, during flight. The rapid and differential degradation of structurally related hormones leads to changes in the ratio in which they are released and therefore will have important consequences for concerted hormone action at the level of the target organ or organs, suggesting that each of the known AKHs may play its own biological role in the overall syndrome of insect flight.
Resumo:
Despite intensive investigation, no clearly defined mechanism explaining human immunodeficiency virus (HIV)-induced cell killing has emerged. HIV-1 infection is initiated through a high-affinity interaction between the HIV-1 external envelope glycoprotein (gp120) and the CD4 receptor on T cells. Cell killing is a later event intimately linked by in vitro genetic analyses with the fusogenic properties of the HIV envelope glycoprotein gp120 and transmembrane glycoprotein gp41. In this report, we describe aberrancies in cell cycle regulatory proteins initiated by cell-cell contact between T cells expressing HIV-1 envelope glycoproteins and other T cells expressing CD4 receptors. Cells rapidly accumulate cyclin B protein and tyrosine-hyperphosphorylated p34cdc2 (cdk1) kinase, indicative of cell cycle arrest at G2 phase. Moreover, these cells continue to synthesize cyclin B protein, enlarge and display an abnormal ballooned morphology, and disappear from the cultures in a pattern previously described for cytotoxicity induced by DNA synthesis (S phase) inhibitors. Similar changes are observed in peripheral blood mononuclear cells infected in vitro with pathogenic primary isolates of HIV-1.
Resumo:
PURPOSE: Malignant ascites is debilitating for patients with advanced cancer. As shown previously, tumour cell production of vascular endothelial growth factor might be a major cause of the formation of malignant ascites. Intraperitoneal bevacizumab could therefore be an option for symptom control in refractory ascites. PATIENTS AND METHODS: Patients with advanced gastrointestinal cancer and malignant ascites who had undergone paracentesis at least twice within the past 4 weeks were randomly assigned in a 2:1 ratio to intraperitoneal bevacizumab (400 mg absolute) or placebo after paracentesis. During the 8-week treatment period, a minimum interval of 14 d was kept between the applications of the study drug. Primary end-point was paracentesis-free survival (ParFS). RESULTS: Fifty-three patients (median age 63 years) were randomised. Forty-nine patients received at least one study drug application and qualified for the main analysis. The proportion of patients with at least one common toxicity criteria grade III-V event was similar with 20/33 (61%) on bevacizumab and 11/16 (69%) on placebo. Median ParFS was 14 d (95% confidence interval [CI]: 11-17) in the bevacizumab arm and 10.5 d (95% CI: 7-21) on placebo (hazard ratio 0.74, 95% CI: 0.40-1.37; P = 0.16). The longest paracentesis-free period was 19 d on bevacizumab (range 6-66 d) and 17.5 d in the placebo arm (range 4-42) (P = 0.85). Median overall survival was 64 d (95% CI: 45-103) on bevacizumab compared to 31.5 d (95% CI: 20-117) on placebo (P = 0.31). CONCLUSION: Intraperitoneal bevacizumab was well tolerated. Overall, treatment did not result in a significantly better symptom control of malignant ascites. However, patients defined by specific immune characteristics may benefit.
Resumo:
Mode of access: Internet.
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
"Report no. CG-D-50-80."
Resumo:
Final report; July 1978.
Resumo:
At head of title: Project 9R38-01-107-30. Contract DA 44-177-TC-652.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
"December 1968."