998 resultados para Carrier Proteins


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Krebserkrankungen gehen oft mit der Überexpression von mucinartigen Glycoproteinen auf der Zelloberfläche einher. In vielen Krebserkrankungen wird aufgrund der fehlerhaften Expression verschiedener Glycosyltransferasen das transmembranständige Glycoprotein MUC1, mit verkürzten Glycanstrukturen, überexprimiert. Das Auftreten der verschiedenen tumor-assoziierten Antigene (TACA) korreliert meist mit dem Fortschreiten des Krebs und der Metastasierung. Daher stellen TACAs interessante Zielmoleküle für die Entwicklung einer aktiven Tumorimmuntherapie zur spezifischen Behandlung von Adenokarzinomen dar. In dieser Arbeit galt das Interesse dem epithelialen Mucin MUC1, auf Basis dessen ein synthetischer Zugang zu einheitlichen Antitumorvakzinen, welche aus mucinanalogen Glyco-peptid¬konjugaten des MUC1 und Carrierproteinen bestehen, hergestellt werden sollten.rnUm eine tumorspezifische Immunantwort zu erhalten, müssen die selbst schwach immunogenen MUC1-Antigene über einen nicht-immunogenen Spacer mit einem geeigneten Trägerprotein, wie Tetanus Toxoid oder Rinderserumalbumin (BSA), verbunden werden. rnDa ein Einsatz von Glycokonjugaten in Impfstoffen durch die metabolische Labilität der O-glycosidischen Bindungen eingeschränkt ist, wurden hierzu erstmals fluorierte Vetreter von MUC1-analogen Glycopeptiden verwendet, in denen das Kohlenhydrat-Epitop durch den strategischen Einbau von Fluor¬atomen gegenüber einem raschen Abbau durch Glycosidasen geschützt werden soll. Dazu wurden auf Basis des literaturbekannten Thomsen-Friedenreich-Antigens Synthesestrategien zur Herstellung eines 2’F- und eines 2’,6’-bisfluorierten-Analogons erarbeitet. rnSchlüsselschritte in der Synthese stellten neben der elektrophilen Fluorierung eines Galactalvorläufers auch die -selektive 3-Galactosylierung des TN-Antigen-Bausteins zum 2’F- und 2’,6’-bisfluorierten-Analogons des TF-Disaccharids dar. Durch entsprechende Schutzgruppentransformationen wurden die beiden Derivate in entsprechende Glycosyl¬amino-säure-Bausteine für die Festphasensynthese überführt.rnNeben den beiden Analoga des TF-Antigens wurde auch erstmals ein 2F-Analogon des 2,6-Sialyl-T-Antigens hergestellt. Dazu wurde der entsprechende 2’F-TF-Baustein mit Sialinsäure-xanthogenat nach bereits bekannten Syntheseprotokollen umgesetzt. Aufgrund von Substanzmangel konnte die Verbindung nicht zur Synthese eines MUC1-Glycopeptid-Analogons herangezogen werden.rnDer Einbau der hergestellten Glycosylaminosäure-Bausteine erfolgte in die aus 20 Amino-säuren bestehende vollständige Wiederholungseinheit aus der tandem repeat-Sequenz des MUC1, wobei die entsprechenden Glycanseitenketten stets in Position 6 eingeführt wurden. Um die erhaltenen Glycopeptide für immunologische Studien an Carrier-Proteine anbinden zu können und so ggf. zu funktionsfähigen Impfstoff-Konjugaten zu gelangen, wurden diese stets N-terminal mit einem nicht-immunogenen Triethylenglycol-Spacer verknüpft. Die anschließende Funktionalisierung mit Quadratsäurediethylester erlaubte die spätere chemoselektive Konjugation an Trägerproteine, wie Tetanus Toxoid oder BSA.rnIn ersten immunologischen Bindungsstudien wurden die synthetisierten BSA-Glycopeptid-Konjugate mit Serum-Antikörpern aus Vakzinierungsstudien von MUC1-Tetanus Toxoid-Konjugaten, die (i) eine natürliche TF-Antigenstruktur und (ii) ein entsprechendes TF-Antigenderivat mit Fluorsubstituenten an C-6 des Galactosamin-Bausteins und C-6’ des Galactoserests tragen, untersucht.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit der Synthese von unterschiedlichen tumorassoziierten Antigenen, die in Form von glycosylierten Aminosäurebausteinen durch Festphasensynthese in den tandem repeat des epithelialen Mucin MUC1 eingebaut wurden. Zur Erzeugung von selektiven Immunantworten wurden synthetische MUC1-Glycopeptide über einen nicht immunogenen Spacer mit einer Reihe von Immunstimulanzien umgesetzt. Es wurden hierbei zwei Ziele verfolgt. Zum einen sollten mit Hilfe von synthetischen MUC1-Glycopeptiden und Immunstimulanzien cytotoxische T-Zellen ausgebildet werden, die Tumorzellen mit überexprimiertem MUC1 am Wachstum hindern und sie in den programmierten Zelltod treiben. Zum anderen sollte mit Hilfe von TH2-Epitopen eine adaptive humorale B-Zell-vermittelte Immunantwort in Form von Antikörpern ausgelöst werden. Zur Ausbildung von cytotoxischen T-Zellen kamen Vakzinkonjugate zum Einsatz, die aus dem IL-1β(163 – 169), dem TLR2-Agonisten (Pam3Cys-Ser-Lys4) oder dem TLR4-Agonisten (spacergebundenes MPL A) bestehen und jeweils an MUC1-Glycopeptide konjugiert wurden. Darüber hinaus wurde eine neue moderne Syntheseroute für das MPL-A entwickelt, welches als Adjuvans in den verschiedenen Vakzinen, wie Cervarix®, Fendrix® und Stimuvax®, Verwendung findet und die Immunantwort der Vakzinkonstrukte nochmals verstärken sollte. Zur Induktion von Antikörpern kamen die OVA(323 – 339)-, die Tetanus-Toxoid- und die BSA-Konjugate zur Anwendung, an denen MUC1-Glycopeptide angeknüpft wurden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug hypersensitivity research has progressed enormously in recent years, and a greater understanding of mechanisms has contributed to improved drug safety. Progress has been made in genetics, enabling personalized medicine for certain drugs, and in understanding drug interactions with the immune system. In a recent meeting in Rome, the clinical, chemical, pharmacologic, immunologic, and genetic aspects of drug hypersensitivity were discussed, and certain aspects are briefly summarized here. Small chemicals, including drugs, can induce immune reactions by binding as a hapten to a carrier protein. Park (Liverpool, England) demonstrated (1) that drug haptens bind to protein in patients in a highly restricted manner and (2) that irreversibly modified carrier proteins are able to stimulate CD4(+) and CD8(+) T cells from hypersensitive patients. Drug haptens might also stimulate cells of the innate immune system, in particular dendritic cells, and thus give rise to a complex and complete immune reaction. Many drugs do not have hapten-like characteristics but might gain them on metabolism (so-called prohaptens). The group of Naisbitt found that the stimulation of dendritic cells and T cells can occur as a consequence of the transformation of a prohapten to a hapten in antigen-presenting cells and as such explain the immune-stimulatory capacity of prohaptens. The striking association between HLA-B alleles and the development of certain drug reactions was discussed in detail. Mallal (Perth, Australia) elegantly described a highly restricted HLA-B∗5701-specific T-cell response in abacavir-hypersensitive patients and healthy volunteers expressing HLA-B∗5701 but not closely related alleles. Expression of HLA-B∗1502 is a marker known to be necessary but not sufficient to predict carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han Chinese. The group of Chen and Hong (Taiwan) described the possible "missing link" because they showed that the presence of certain T-cell receptor (TCR) clonotypes was necessary to elicit T-cell responses to carbamazepine. The role of TCRs in drug binding was also emphasized by Pichler (Bern, Switzerland). Following up on their "pharmacological interactions of drugs with immune receptors" concept (p-i concept), namely that drugs can bind directly to TCRs, MHC molecules, or both and thereby stimulate T cells, they looked for drug-binding sites for the drug sulfamethoxazole in drug-specific TCRs: modeling revealed up to 7 binding sites on the CDR3 and CDR2 regions of TCR Vα and Vβ. Among many other presentations, the important role of regulatory T cells in drug hypersensitivity was addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ace is an adhesin to collagen from Enterococcus faecalis expressed conditionally after growth in serum or in the presence of collagen. Here, we generated an ace deletion mutant and showed that it was significantly attenuated versus wild-type OG1RF in a mixed infection rat endocarditis model (P<0.0001), while no differences were observed in a peritonitis model. Complemented OG1RFDeltaace (pAT392::ace) enhanced early (4 h) heart valve colonization versus OG1RFDeltaace (pAT392) (P = 0.0418), suggesting that Ace expression is important for early attachment. By flow cytometry using specific anti-recombinant Ace (rAce) immunoglobulins (Igs), we showed in vivo expression of Ace by OG1RF cells obtained directly from infected vegetations, consistent with our previous finding of anti-Ace antibodies in E. faecalis endocarditis patient sera. Finally, rats actively immunized against rAce were less susceptible to infection by OG1RF than non-immunized (P = 0.0004) or sham-immunized (P = 0.0475) by CFU counts. Similarly, animals given specific anti-rAce Igs were less likely to develop E. faecalis endocarditis (P = 0.0001) and showed fewer CFU in vegetations (P = 0.0146). In conclusion, we have shown for the first time that Ace is involved in pathogenesis of, and is useful for protection against, E. faecalis experimental endocarditis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enterococcus faecalis, the third most frequent cause of bacterial endocarditis, appears to be equipped with diverse surface-associated proteins showing structural-fold similarity to the immunoglobulin-fold family of staphylococcal adhesins. Among the putative E. faecalis surface proteins, the previously characterized adhesin Ace, which shows specific binding to collagen and laminin, was detectable in surface protein preparations only after growth at 46 degrees C, mirroring the finding that adherence was observed in 46 degrees C, but not 37 degrees C, grown E. faecalis cultures. To elucidate the influence of different growth and host parameters on ace expression, we investigated ace expression using E. faecalis OG1RF grown in routine laboratory media (brain heart infusion) and found that ace mRNA levels were low in all growth phases. However, quantitative reverse transcription-PCR showed 18-fold-higher ace mRNA amounts in cells grown in the presence of collagen type IV compared to the controls. Similarly, a marked increase was observed when cells were either grown in the presence of collagen type I or serum but not in the presence of fibrinogen or bovine serum albumin. The production of Ace after growth in the presence of collagen type IV was demonstrated by immunofluorescence microscopy, mirroring the increased ace mRNA levels. Furthermore, increased Ace expression correlated with increased collagen and laminin adhesion. Collagen-induced Ace expression was also seen in three of three other E. faecalis strains of diverse origins tested, and thus it appears to be a common phenomenon. The observation of host matrix signal-induced adherence of E. faecalis may have important implications on our understanding of this opportunistic pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Escherichia coli, cytokinesis is orchestrated by FtsZ, which forms a Z-ring to drive septation. Spatial and temporal control of Z-ring formation is achieved by the Min and nucleoid occlusion (NO) systems. Unlike the well-studied Min system, less is known about the anti-DNA guillotining NO process. Here, we describe studies addressing the molecular mechanism of SlmA (synthetic lethal with a defective Min system)-mediated NO. SlmA contains a TetR-like DNA-binding fold, and chromatin immunoprecipitation analyses show that SlmA-binding sites are dispersed on the chromosome except the Ter region, which segregates immediately before septation. SlmA binds DNA and FtsZ simultaneously, and the SlmA-FtsZ structure reveals that two FtsZ molecules sandwich a SlmA dimer. In this complex, FtsZ can still bind GTP and form protofilaments, but the separated protofilaments are forced into an anti-parallel arrangement. This suggests that SlmA may alter FtsZ polymer assembly. Indeed, electron microscopy data, showing that SlmA-DNA disrupts the formation of normal FtsZ polymers and induces distinct spiral structures, supports this. Thus, the combined data reveal how SlmA derails Z-ring formation at the correct place and time to effect NO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regular arrangement of leaves around a plant's stem, called phyllotaxis, has for centuries attracted the attention of philosophers, mathematicians and natural scientists; however, to date, studies of phyllotaxis have been largely theoretical. Leaves and flowers are formed from the shoot apical meristem, triggered by the plant hormone auxin. Auxin is transported through plant tissues by specific cellular influx and efflux carrier proteins. Here we show that proteins involved in auxin transport regulate phyllotaxis. Our data indicate that auxin is transported upwards into the meristem through the epidermis and the outermost meristem cell layer. Existing leaf primordia act as sinks, redistributing auxin and creating its heterogeneous distribution in the meristem. Auxin accumulation occurs only at certain minimal distances from existing primordia, defining the position of future primordia. This model for phyllotaxis accounts for its reiterative nature, as well as its regularity and stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The delivery of copper to specific sites within the cell is mediated by distinct intracellular carrier proteins termed copper chaperones. Previous studies in Saccharomyces cerevisiae suggested that the human copper chaperone HAH1 may play a role in copper trafficking to the secretory pathway of the cell. In this current study, HAH1 was detected in lysates from multiple human cell lines and tissues as a single-chain protein distributed throughout the cytoplasm and nucleus. Studies with a glutathione S-transferase-HAH1 fusion protein demonstrated direct protein–protein interaction between HAH1 and the Wilson disease protein, which required the cysteine copper ligands in the amino terminus of HAH1. Consistent with these in vitro observations, coimmunoprecipitation experiments revealed that HAH1 interacts with both the Wilson and Menkes proteins in vivo and that this interaction depends on available copper. When these studies were repeated utilizing three disease-associated mutations in the amino terminus of the Wilson protein, a marked diminution in HAH1 interaction was observed, suggesting that impaired copper delivery by HAH1 constitutes the molecular basis of Wilson disease in patients harboring these mutations. Taken together, these data provide a mechanism for the function of HAH1 as a copper chaperone in mammalian cells and demonstrate that this protein is essential for copper homeostasis.