132 resultados para Carbonization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charcoal is obtained from carbonization, much used in the steel industry for ore reduction, using as raw material the Eucalyptus. The present study aims to verify whether the main Eucalyptus saligna genetically modified produce quality charcoal with only 3.5 years old. The study was done with material collected from three trees, divided into five discs removed at 0, 25 , 50 , 75 and 100 % of the commercial height of the tree. The procedures adopted were based on standards published by ABNT. The results were satisfactory for the parameters: basic wood density with an average of 0.39 ± 0.0082 g / cm ³; volatile materials from coal with an average of 19.35 ± 3.27 %, fixed carbon content of the coal with an average of 75.62 ± 3.40 % and gross calorific value of coal with an average of 4694.43 cal / g, and unsatisfactory results for ash content averaging 5.03 ± 0.23 when compared to the values found in the literature. It was concluded that the studied wood is able to produce charcoal, but the factors of production should be better observed, such as heating time which exerted direct influence on the determination of ash content

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, we live in a time of rapid research for technological advances, in a way that this pursuit of new technologies is deeply connected to the diversity of new materials that have been developed by mankind. It deals with issues such as materials with enhanced properties which offer better quality, less cost and high performance, while they are accessible both in their production and moment of operation. In this context, it was required to develop electrodes that were easy to prepare as well as which present high electric conductivity and good mechanic proprieties by using carbonaceous material as basis. For this reason, the best parameters of the furfuryl resin cures were established with different pH variations through viscosimetric measurements and differential scanning calorimetry. By scanning electron microscopy (SEM) was possible to identify an increased porosity in the samples with pH 7 and pH 8, as compared to samples with lower pH content. After carbonization of the material, the characterization of monolithic glassy carbon was held by means of FT-IR techniques, Raman spectroscopy, X-ray diffraction and cyclic voltammetry. The spectra showed that the change in pH does not have significant influence on the crystallographic ordering of the material and its structural characteristics. As for the electrochemical character, the CVM electrodes showed excellent response, with good reversibility and wide potential window. Some voltammetric curve deviations were only observed for the sample with pH 4, which may be related to processing parameters adopted

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, we live in a time of rapid research for technological advances, in a way that this pursuit of new technologies is deeply connected to the diversity of new materials that have been developed by mankind. It deals with issues such as materials with enhanced properties which offer better quality, less cost and high performance, while they are accessible both in their production and moment of operation. In this context, it was required to develop electrodes that were easy to prepare as well as which present high electric conductivity and good mechanic proprieties by using carbonaceous material as basis. For this reason, the best parameters of the furfuryl resin cures were established with different pH variations through viscosimetric measurements and differential scanning calorimetry. By scanning electron microscopy (SEM) was possible to identify an increased porosity in the samples with pH 7 and pH 8, as compared to samples with lower pH content. After carbonization of the material, the characterization of monolithic glassy carbon was held by means of FT-IR techniques, Raman spectroscopy, X-ray diffraction and cyclic voltammetry. The spectra showed that the change in pH does not have significant influence on the crystallographic ordering of the material and its structural characteristics. As for the electrochemical character, the CVM electrodes showed excellent response, with good reversibility and wide potential window. Some voltammetric curve deviations were only observed for the sample with pH 4, which may be related to processing parameters adopted

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PTFE foils were irradiated with different ion beams (Xe, Au and U) with energies up to 1.5 GeV and fluences between 1 x 10(8) and 1 x 10(13) ions/cm(2) at room temperature. The induced modifications in the polymer were analyzed by FTIR, UV-Vis spectroscopy, and XRD. In the FTIR spectra, the CF2 degradation accompanied by the formation of CF3 terminal and side groups were observed. In the UV-Vis spectra, the observed increase in the absorption at UV wavelengths is an indication of polymer carbonization. From XRD, the amorphization of the material was evidenced by the decrease in the intensity of the main diffraction peak. An exponential fit of the intensity of the IR absorption peaks resulted in the following values: 2.9 +/- 0.8; 4.5 +/- 0.9 and 5.6 +/- 0.8 nm for the latent track radius after irradiation with Xe, Au and U beams, respectively. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery “wastes”: lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization ( Peptidoglycan (a bacterial cell wall material) was copolymerized with poly-(3-hydroxybutyrate), a common polyhydroxyalkanoate produced by bacteria with the objective of determining if a useful material could be obtained with a less rigorous work-up on harvesting polyhydroxyalkanoates. The copolyesteramide product having 25 wt.% peptidoglycan from a highly purified peptidoglycan increased thermal stability by 100-200 °C compared to the poly-(3-hydroxybutyrate) control, while a less pure peptidoglycan, harvested from B. megaterium (ATCC 11561), gave a 25-50 °C increase in thermal stability. Both copolymers absorbed more moisture than pure poly-(3-hydroxybutyrate). The results suggest that a less rigorously harvested and purified polyhydroxyalkanoate might be useful for some applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two highly efficient (K2CO3/sludge carbon and ZnCl2/sludge carbon) solids were prepared by chemical addition following carbonization at 800 °C and were tested for anaerobic reduction of tartrazine dye in a continuous upflow packed-bed biological reactor, and their performance was compared to that of commercial activated carbon (CAC). The chemical and structural information of the solids was subjected to various characterizations in order to understand the mechanism for anaerobic decolorization, and efficiency for SBCZN800 and SBCPC800 materials was 87% and 74%, respectively, at a short space time (τ) of 2.0 min. A first-order kinetic model fitted the experimental points and kinetic constants of 0.40, 0.92 and 1.46 min(-1) were obtained for SBCZN800, SBCPC800 and CAC, respectively. The experimental results revealed that performance of solids in the anaerobic reduction of tartrazine dye can depend on several factors including chemical agents, carbonization, microbial population, chemical groups and surface chemistry. The Langmuir and Freundlich models are successfully described in the batch adsorption data. Based on these observations, a cost-effective sludge-based catalyst can be produced from harmful sewage sludge for the treatment of industrial effluents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl2 and the activation by means of carbonization at different temperatures (400, 600 and 800°C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0m(2)/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kind, sedimentation rate, and diagenesis of organic particles delivered to the North Atlantic seafloor during the Middle Jurassic-Early Cretaceous were responsible for the presence of carbonaceous sediments in Hole 534A. Organic-rich black clays formed from the rapid supply of organic matter; this organic matter was composed of either abundant, well-preserved, and poorly sorted particles of land plants deposited in clays and silty clays within terrigenous turbiditic sequences (tracheal facies) or abundant amorphous debris (xenomorphic facies) generated through the digestive tracts of marine zooplankton and sedimented as fecal pellets. Evidence for the fecal-pellet origin of xenomorphic debris is illustrated. Black clays were also produced in sediments containing less organic matter as a result of the black color of carbonized particles composing all or most of the residues (micrinitic facies). Slowly sedimented hematitic Aptian clays contain very little carbonized, organic debris that survived diagenetic oxidation. In the red calcareous clay sequence of the Late Jurassic, larger amounts of this oxidized debris turned several clay layers black or blackish red. Carbonized debris also dominates the residues recovered in interbedded black and green Albian clays. Carbonization of organic matter in these sediments either turned them black or provided the diagenetic environment for reduced iron. Carbonized debris is also appreciable in burrow-mottled black-green Kimmeridgian clay. The study of Hole 534A organic matter indicates that during the middle Callovian there was a rapid supply of terrigenous organic matter, followed by a late Callovian episode of rapidly supplied xenomorphic debris deposited as fecal pellets. The Late Jurassic-Berriasian was a time of slower sedimentation of organic matter, primarily of a marine dinoflagellate flora in a poorly preserved xenomorphic facies variously affected by diagenetic oxidation. Several intervals of carbonized tracheal tissue in the Oxfordian and Kimmeridgian suggest episodes of oxidized terrigenous matter. The same sequence of Callovian organic events is evident in much of the Early Cretaceous

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal con- tents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic com- pounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis has been devoted to the synthesis and investigation of functional properties of silicon carbide thin films and nanowires. The work took profit from the experience of the research group in the synthesis of 3C-SiC from vapour phase. 3C-SiC thin films Thin films heteroepitaxy on silicon substrates was carried out in a vapour phase epitaxy reactor. The initial efforts were committed to the process development in order to enhance the crystal quality of the epi-layer. The carbonization process and a buffer layer procedure were optimized in order to obtain good quality monocrystalline 3C-SiC layers. The films characterization was used not only to improve the entire process, but also to assess the crystalline quality and to identify the defects. Methyltrichlorosilane (MTS) was introduced during the synthesis to increase the growth rate and enhance crystalline quality. The effect of synthesis parameters such as MTS flow and process temperature was studied in order to promote defect density reduction and the release of the strain due to lattice mismatch between 3C-SiC and silicon substrate. In-growth n-type doping was implemented using a nitrogen gas line and the effect of different synthesis parameters on doping level was studied. Raman measurements allowed a contactless characterization and evaluation of electrically active dopant. The effect of MTS on nitrogen incorporation was investigated and a promotion of dopant concentration together with a higher growth rate were demonstrated. This result allows to obtain higher doping concentrations without deteriorating crystal quality in 3C-SiC and, to the best of our knowledge, it has never been demonstrated before. 3C-SiC nanowires Core-shell SiC-SiO2 nanowires were synthesized using a chemical vapour deposition technique in an open tube configuration reactor on silicon substrates. Metal catalyst were used to promote a uniaxial growth and a dense bundle of nanowires 100 µm long and 60 nm thick was obtained. Substrate preparation was found to be fundamental in order to obtain a uniform nanowire density. Morphological characterization was carried out using scanning electron microscopy and the analysis of structural, compositional, optical properties is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmentally friendly sulfonated black carbon (BC) catalysts were prepared from biodiesel waste, glycerol. These black carbons (BCs) contain a high amount of acidic groups, mainly sulfonated and oxygenated groups. Furthermore, these catalysts show a high catalytic activity in the glycerol etherification reaction with tert-butyl alcohol, the activity being larger for the sample prepared with a higher glycerol:sulfuric acid ratio (1:3). The yield for mono-tert-butyl glycerol (MTBG), di-tert-butyl glycerol (DTBG) and tri-tert-butyl-glycerol (TTBG) were very similar to those obtained using a commercial resin, Amberlyst-15. Furthermore, experimental results show that the carbon with the lowest acidic surface group content, BC prepared in minor glycerol:sulfuric acid ratio (10:1), can be chemically treated after carbonization to achieve an improved catalytic activity. The activity of all BCs is high and very similar, about 50% and 20% for the MTBG and DTBG + TTBG, respectively.