892 resultados para Carbon sequestration - Pasture - Grazing management
Resumo:
Estimates of potential and actual C sequestration require areal information about various types of management activities. Forest surveys, land use data, and agricultural statistics contribute information enabling calculation of the impacts of current and historical land management on C sequestration in biomass (in forests) or in soil (in agricultural systems). Unfortunately little information exists on the distribution of various management activities that can impact soil C content in grassland systems. Limited information of this type restricts our ability to carry out bottom-up estimates of the current C balance of grasslands or to assess the potential for grasslands to act as C sinks with changes in management. Here we review currently available information about grassland management, how that information could be related to information about the impacts of management on soil C stocks, information that may be available in the future, and needs that remain to be filled before in-depth assessments may be carried out. We also evaluate constraints induced by variability in information sources within and between countries. It is readily apparent that activity data for grassland management is collected less frequently and on a coarser scale than data for forest or agricultural inventories and that grassland activity data cannot be directly translated into IPCC-type factors as is done for IPCC inventories of agricultural soils. However, those management data that are available can serve to delineate broad-scale differences in management activities within regions in which soil C is likely to change in response to changes in management. This, coupled with the distinct possibility of more intensive surveys planned in the future, may enable more accurate assessments of grassland C dynamics with higher resolution both spatially and in the number management activities.
Resumo:
Current climate mitigation policies have not fully resolved contentious issues regarding the inclusion of carbon sequestration through changes in forestry and agricultural management practices. Terrestrial carbon sinks could be a low-cost mitigation option that fosters conservation and development, yet issues related to accurately documenting the amount of carbon sequestered undermine confidence that emission offsets through sequestration are equivalent to emission reductions. From an atmospheric perspective, net of CO2 removals through sequestration are equivalent to emission reductions over a given period of time. But carbon will not remain sequestered in biomass or soils indefinitely and investments in sequestration could stifle investments in reducing emissions from other sources. Many international climate agreements cap emissions from some countries or sectors but enable participation of uncapped countries or sectors for forestry and agricultural sequestration. This structure can prompt emission increases in parts of the uncapped entities that weaken the value of emission reductions earned through sequestration. This has been a minor issue under the Clean Development Mechanism of the Kyoto Protocol. Reduced emissions through deforestation and degradation is susceptible to the same problems. The purpose of this article is to review the science, politics, and policy that form the basis of arguments for and against the inclusion forestry and agricultural sequestration as a component of current and future international climate mitigation policies.
Resumo:
The issue of carbon sequestration rights has become topical following the United Nations Convention on Climate Change and the subsequent Kyoto Protocol which identified emissions trading as one of the mechanisms to reduce greenhouse gas emissions. The Australian Government has responded by initiating the Garnaut Climate Change Review which in its final report, proposed that an emissions trading scheme be introduced and set out some of the desirable features of such a trading scheme. This proposal has been the subject of much debate and at this stage there still seems to be little clarity surrounding the topic of emissions trading in Australia. The treatment of rights to carbon sequestered in vegetation is also an issue when reconciled with the system of land tenure and ownership in many jurisdictions. These carbon property rights are treated differently in different Australian and international jurisdictions ranging from recognition of their new and unique nature to fitting them within a more established common law framework, e.g.a profit a prendre. This paper identifies the treatment of these sequestered carbon rights within the wider property rights framework in Australia and considers issues that this treatment may inflict on land holders when there is a fracturing of ownership between the rights of the carbon in vegetation and the ownership of the land.
Resumo:
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above-ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits in order to achieve systematically maximal co-benefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision-making rules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio-economic models in order to find restoration solutions that maximize simultaneously biodiversity, carbon stocks and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost-effective and adaptable forest management rules to achieve biodiversity, carbon sequestration and other socio-economic co-benefits under global change.
Resumo:
The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales
Resumo:
A decision support system has been developed in Queensland to evaluate how changes in silvicultural regimes affect wood quality, and specifically the graded recovery of structural timber. Models of tree growth, branch architecture and wood properties were developed from data collected in routine Caribbean pine plantations and specific silvicultural experiments. These models were incorporated in software that simulates the conversion of standing trees into logs, and the logs into boards, and generates detailed data on knot location and basic density distribution. The structural grade of each board was determined by simulating the machine stress-grading process, and the predicted graded recovery provided an indicator of wood value. The decision support system improves the basis of decision-making by simulating the performance of elite genetic material under specified silvicultural regimes and by predicting links between wood quality and general stand attributes such as stocking and length of rotation.
Resumo:
Planned grazing systems are being introduced to beef cattle enterprises across the marginal cropping lands of Queensland, as they are on more extensive grazing properties. Systems range from continuous grazing with opportunistic summer rest periods to cell systems with more than 60 paddocks. The aim of planned grazing is to increase production, improve sustainability and increase economic viability from both the pastured and cropping lands of a property. Managing the more intensive grazing systems on native or sown pastures with strategic summer and winter forage crops is a challenge under the variable rainfall conditions. Under favourable conditions, integrating summer and winter crops with summer-growing grass-based pastures offers a wider range of options for breeding, finishing and marketing cattle. The integration of pasture grazing systems with opportunistic forage cropping systems on marginal cropping lands is discussed, and a current research project assessing grazing systems is described.
Resumo:
Phenotypic variation in heartwood and essential-oil characters of Santalum austrocaledonicum was assessed across eleven populations on seven islands of Vanuatu Trees differed significantly in their percentage heartwood cross-sectional area and this varied independently of stem diameter The concentrations of the four major essential-oil constituents (alpha-santalol, beta-santalol. (Z)-beta-curcumen-12-ol, and cis-nuciferol) of alcohol-extracted heartwood exhibited at least tenfold and continuous tree-to-tree variation Commercially important components alpha- and beta-santalol found in individual trees ranged from 0 8-47% and 0-24 1%, respectively, across all populations, and significant (P < 0 05) differences for each were found between Individual populations. The Erromango population was unique in that the mean concentrations of its monocyclic ((Z)-beta-curcumen-12-ol and cis-nuciferol) sesquiterpenes exceeded those of Its bi- and tricyclic (alpha- and beta-santalol) sesquiterpenes Heartwood colour varied between trees and spanned 65 colour categories, but no identifiable relationships were found between heartwood colour and alpha- and beta-santalol, although a weak relationship was evident between colour saturation and total oil concentration These results indicate that the heartwood colour is not a reliable predictive trait for oil quality The results of this study highlight the knowledge gaps in fundamental understanding of heartwood biology in Santalum genus The intraspecific variation in heartwood cross-sectional area. oil concentration. and oil quality traits is of considerable importance to the domestication of sandalwood and present opportunities for the development of highly superior S austrocaledonicum cultivars that conform to the industry's International Standards used for S album.
Resumo:
A workshop held in Ballina (NSW, Australia) during 5–7 August 2005 in association with the XXII IUFRO World Congress, sought to quantify the potential of mixtures to sustain and enhance the growth and productivity, soil fertility, tree and stand health, wood quality, and economics of polyculture plantations. Participants were specifically asked to address whether demonstrable productivity gains in mixed-species plantations, compared with monoculture plantations, could make mixtures a commercially attractive option. We specifically sought to attract presentations addressing the operational challenges of making mixed-species plantations practical and successful, and attracted representatives from several industrial plantation agencies.
Resumo:
The Wambiana grazing trial started in 1997 to test and develop sustainable and profitable grazing strategies to manage for rainfall variability. It is important that this trial continue as the results are still relatively short-term relative to rainfall cycles and significant treatment changes are still occurring. This new proposal will maintain baseline treatments but will modify others based on trial learning’s to date. It builds on treatment differences and evidence collected over the last 12 years to deliver evidence-based guidelines and principles for sustainable and productive management. The trial also links to other projects modelling water quality, climate change, methane emissions and soil C sequestration on grazing lands.
Resumo:
Evaluating the length of time required to dry hardwood timber using vacuum drying compared to conventional drying facilities and technology.
Resumo:
FWPA Cullity Fellowship research program - Characterisation of wood properties and transverse anatomy for vacuum drying modelling of commercially important Australian hardwood species.
Resumo:
Research the viability of vacuum drying Australian commercially important hardwood species.
Resumo:
Computational Modelling of the Vacuum Drying of Australian Hardwoods.
Resumo:
Over 7 years, this project collected data about the pasture, tree and soil surface dynamics of two major Aristida/Bothriochloa pasture types within the eucalypt woodlands of central Queensland. Six different grazing management scenarios were compared ecologically and economically, along with the effects of spring burns and tree killing. Heavy stocking (3-4 ha per adult equivalent) produced the greatest short-term financial return from healthy pastures but was not a sustainable practice and long-term cash returns were no better than those from moderate stocking. The environmental benefits of moderate grazing over heavy grazing were very clear. Light stocking produced better environmental outcomes compared to moderate stocking but was clearly inferior with respect to economic returns. Killing silver-leaved ironbark trees near Rubyvale produced no measurable improvement in pasture growth or quality for at least 6 years whereas at Injune the same treatment of poplar box trees resulted in an immediate and large enhancement in pasture production and carrying capacity. The gritty red duplex soil at Rubyvale was much more erodible than the grey solodic at Injune although the latter becomes very erodible if the stable surface soil is breached. Good seasonal rainfall produced faster changes in pasture composition than extremes of grazing management. The perennial grasses were easier to recruit than to eliminate by grazing management changes.