971 resultados para Carbon dioxide lasers
Resumo:
This paper is intended to determine the appropriate conditions for replacing CH4 from NGH with CO2. By analyzing the hydration equilibrium graphs and geotherms, the HSZs of NGH and CO2 hydrate, both in permafrost and under deep sea, were determined. Based on the above analysis and experimental results, it is found that to replace CH4 from NGH with gaseous CO2, the appropriate experimental condition should be in the area surrounded by four curves: the geotherm, (H-V)(CO2), (L-V)(CO2) and (H-V)(CH4), and to replace CH4 from NGH with liquid CO2, the condition should be in the area surrounded by three curves: (L-V)(CO2), (H-L)(CO2) and (H-V)CH4. For conditions in other areas, either CO2 can not form a hydrate or CH4 can release little from its hydrate, which are not desirable results.
Resumo:
A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.