950 resultados para Carbon Sequestration Right
Resumo:
Áreas agrícolas trocam enormes fluxos de CO2, oferecendo uma oportunidade para mitigar o efeito estufa. Neste trabalho, estudou-se o potencial de sequestro de carbono em razão da conversão no manejo das principais atividades agrícolas do Brasil. Dados de vários estudos têm indicado que no sistema soja/milho e nas respectivas rotações, ocorre um sequestro de carbono no solo significativo ao longo dos anos de conversão do plantio convencional para o plantio direto, com uma média de 0,41 Mg C ha-1 ano-1. O mesmo efeito tem sido observado nos canaviais, porém há maiores acúmulos de carbono no solo quando as áreas de cana-de-açúcar são convertidas da colheita baseada na queima para a mecanizada, em que grandes quantidades de palha são deixadas na superfície do solo (1,8 Mg C ha-1 ano-1). Esse maior potencial de acúmulo de carbono no solo nos canaviais, comparado com outras culturas, está diretamente relacionado com a maior produção primária dessa cultura. Apesar disso, muito desse potencial de sequestro é perdido, uma vez que os canaviais são reformados, sob preparo intensivo do solo. As áreas de pasto mostram uma depleção nos estoques de carbono, quando convertidas de áreas naturais; porém, a integração dessas áreas com agricultura pode promover o aumento nos estoques de carbono do solo. Os trabalhos têm mostrado que as principais atividades agrícolas do Brasil possuem um grande potencial de mitigação, especialmente na forma de acúmulo de carbono no solo, sendo uma oportunidade para estratégias futuras.
Resumo:
Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Characterizing vegetation composition, carbon/nitrogen (C/N) content of soils, and root-mass distribution is critical to understanding carbon sequestration potential of subirrigated meadows in the Nebraska Sandhills. Five subirrigated meadows dominated by cool-season (C3) graminoids and five meadows dominated by warm-season (C4) grasses were selected throughout the Nebraska Sandhills. Vegetation, soil carbon and nitrogen, and root-mass density distribution were sampled in each meadow. Meadows dominated by C3 vegetation had 12% greater (P < 0.1) yields than meadows dominated by C4 vegetation. Total root-mass density was 30% greater (P < 0.1) in C4-dominated meadows than C3-dominated meadows. Total carbon and nitrogen content was 65% and 53% greater (P < 0.1), respectively, in the A horizon of C3-dominated meadows, but was 43% and 52% greater (P < 0.1), respectively, in the C horizon of C4-dominated meadows. Although meadows dominated by C3 vegetation had more carbon in the soil profile, much of the carbon in C3-dominated meadows appeared to be recalcitrant C4 carbon from historic vegetation.
Resumo:
Most research on carbon content of trees has focused on temperate tree species with little information existing on the carbon content of tropical tree species. This study investigated the variation in carbon content of selected tropical tree species and compared carbon content of Khaya spp from two ecozones in Ghana. Allometric equations developed for mixed-plantation stands for wet evergreen forest verified the expected strong relationship between tree volumes and dbh (r2>0.93) and volume and dbh2×height (r2>0.97). Carbon concentration, wood density and carbon content differed significantly among species. Volume at age 12 ranged from 0.01 to 1.04 m3 per tree, and wood density was highly variable among species, ranging from 0.27 to 0.76 g cm-3. This suggests that species specific density data is critical for accurate conversion of volumes derived from allometric relationships into carbon contents. Significant differences in density of Khaya spp existed between the wet and moist semi-deciduous ecozones. The baseline species-level information from this study will be useful for carbon accounting and development of carbon sequestration strategies in Ghana and other tropical African countries.
Resumo:
In this study, we assess the climate mitigation potential from afforestation in a mountainous snow-rich region (Switzerland) with strongly varying environmental conditions. Using radiative forcing calculations, we quantify both the carbon sequestration potential and the effect of albedo change at high resolution. We calculate the albedo radiative forcing based on remotely sensed data sets of albedo, global radiation and snow cover. Carbon sequestration is estimated from changes in carbon stocks based on national inventories. We first estimate the spatial pattern of radiative forcing (RF) across Switzerland assuming homogeneous transitions from open land to forest. This highlights where forest expansion still exhibits climatic benefits when including the radiative forcing of albedo change. Second, given that forest expansion is currently the dominant land-use change process in the Swiss Alps, we calculate the radiative forcing that occurred between 1985 and 1997. Our results show that the net RF of forest expansion ranges from −24 W m−2 at low elevations of the northern Prealps to 2 W m−2 at high elevations of the Central Alps. The albedo RF increases with increasing altitude, which offsets the CO2 RF at high elevations with long snow-covered periods, high global radiation and low carbon sequestration. Albedo RF is particularly relevant during transitions from open land to open forest but not in later stages of forest development. Between 1985 and 1997, when overall forest expansion in Switzerland was approximately 4%, the albedo RF offset the CO2 RF by an average of 40%. We conclude that the albedo RF should be considered at an appropriately high resolution when estimating the climatic effect of forestation in temperate mountainous regions.
Resumo:
Shrubs play an important role in water-limited agro-silvo-pastoral systems by providing shelter and forage for livestock, for erosion control, to maintain biodiversity, diversifying the landscape, and above all, facilitating the regeneration of trees. Furthermore, the carbon sink capacity of shrubs could also help to mitigate the effects of climate change since they constitute a high proportion of total plant biomass. The contribution of two common extensive native shrub species (Cistus ladanifer L. and Retama sphaerocarpa (L.) Boiss.) to the carbon pool of Iberian dehesas (Mediterranean agro-silvo-pastoral systems) is analyzed through biomass models developed at both individual (biovolume depending) and community level (height and cover depending). The total amount of carbon stored in these shrubs, including above- and belowground biomass, ranges from 1.8 to 11.2 Mg C ha_1 (mean 6.8 Mg C ha_1) for communities of C. ladanifer and from 2.6 to 8.6 Mg C ha_1 (mean 4.5 Mg C ha_1) for R. sphaerocarpa. These quantities account for over 20e30% of the total plant biomass in the system. The potential for carbon sequestration of these shrubs in the studied system ranges 0.10e1.32 Mg C ha_1 year_1 and 0.25e1.25 Mg C ha_1 year_1 for the C. ladanifer and R. sphaerocarpa communities’ respectively
Resumo:
The Miocene Climatic Optimum (~17-14.7 Ma) represents one of several major interruptions in the long-term cooling trend of the past 50 million years. To date, the processes driving high-amplitude climate variability and sustaining global warmth during this remarkable interval remain highly enigmatic. We present high-resolution benthic foraminiferal and bulk carbonate stable isotope records in an exceptional, continuous, carbonate-rich sedimentary archive (Integrated Ocean Drilling Program Site U1337, eastern equatorial Pacific Ocean), which offer a new view of climate evolution over the onset of the Climatic Optimum. A sharp decline in d18O and d13C at ~16.9 Ma, contemporaneous with a massive increase in carbonate dissolution, demonstrates that abrupt warming was coupled to an intense perturbation of the carbon cycle. The rapid recovery in d13C at ~16.7 Ma, ~200 k.y. after the beginning of the MCO, marks the onset of the first carbon isotope maximum within the long-lasting "Monterey Excursion". These results lend support to the notion that atmospheric pCO2 variations drove profound changes in the global carbon reservoir through the Climatic Optimum, implying a delicate balance between changing CO2 fluxes, rates of silicate weathering and global carbon sequestration. Comparison with a high-resolution d13C record spanning the onset of the Cretaceous Oceanic Anoxic Event 1a (~120 Ma ago) reveals common forcing factors and climatic responses, providing a long-term perspective to understand climate-carbon cycle feedbacks during warmer periods of Earth's climate with markedly different atmospheric CO2 concentrations.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
Seagrass meadows are highly productive habitats found along many of the world's coastline, providing important services that support the overall functioning of the coastal zone. The organic carbon that accumulates in seagrass meadows is derived not only from seagrass production but from the trapping of other particles, as the seagrass canopies facilitate sedimentation and reduce resuspension. Here we provide a comprehensive synthesis of the available data to obtain a better understanding of the relative contribution of seagrass and other possible sources of organic matter that accumulate in the sediments of seagrass meadows. The data set includes 219 paired analyses of the carbon isotopic composition of seagrass leaves and sediments from 207 seagrass sites at 88 locations worldwide. Using a three source mixing model and literature values for putative sources, we calculate that the average proportional contribution of seagrass to the surface sediment organic carbon pool is ∼50%. When using the best available estimates of carbon burial rates in seagrass meadows, our data indicate that between 41 and 66 gC m−2 yr−1 originates from seagrass production. Using our global average for allochthonous carbon trapped in seagrass sediments together with a recent estimate of global average net community production, we estimate that carbon burial in seagrass meadows is between 48 and 112 Tg yr−1, showing that seagrass meadows are natural hot spots for carbon sequestration.
Resumo:
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.