858 resultados para Carbon Emissions, Electric Vehicles, Energy, Forecasting, Internal Combustion Engines, Modelling, Passenger Car Vehicles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large penetration of intermittent resources, such as solar and wind generation, involves the use of storage systems in order to improve power system operation. Electric Vehicles (EVs) with gridable capability (V2G) can operate as a means for storing energy. This paper proposes an algorithm to be included in a SCADA (Supervisory Control and Data Acquisition) system, which performs an intelligent management of three types of consumers: domestic, commercial and industrial, that includes the joint management of loads and the charge/discharge of EVs batteries. The proposed methodology has been implemented in a SCADA system developed by the authors of this paper – the SCADA House Intelligent Management (SHIM). Any event in the system, such as a Demand Response (DR) event, triggers the use of an optimization algorithm that performs the optimal energy resources scheduling (including loads and EVs), taking into account the priorities of each load defined by the installation users. A case study considering a specific consumer with several loads and EVs is presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forests are a store of carbon and an eco-system that continually removes carbon dioxide from the atmosphere. If they are sustainably managed, the carbon store can be maintained at a constant level, while the trees removed and converted to timber products can form an additional long term carbon store. The total carbon store in the forest and associated ‘wood chain’ therefore increases over time, given appropriate management. This increasing carbon store can be further enhanced with afforestation. The UK’s forest area has increased continually since the early 1900s, although the rate of increase has declined since its peak in the late 1980s, and it is a similar picture in the rest of Europe. The increased sustainable use of timber in construction is a key market incentive for afforestation, which can make a significant contribution to reducing carbon emissions. The case study presented in this paper demonstrates the carbon benefits of a Cross Laminated Timber (CLT) solution for a multi-storey residential building in comparison with a more conventional reinforced concrete solution. The embodied carbon of the building up to completion of construction is considered, together with the stored carbon during the life of the building and the impact of different end of life scenarios. The results of the study show that the total stored carbon in the CLT structural frame is 1215tCO2 (30tCO2 per housing unit). The choice of treatment at end of life has a significant effect on the whole life embodied carbon of the CLT frame, which ranges from -1017 tCO2e for re-use to +153tCO2e for incinerate without energy recovery. All end of life scenarios considered result in lower total CO2e emissions for the CLT frame building compared with the reinforced concrete frame solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Boston Red Sox emit a great deal of carbon throughout the regular baseball season because of flights to the home fields of their opponents. Knowing that air travel is one of the biggest transportation-based contributors to global climate change, the Boston Red Sox (and all major league teams) should be encouraged to offset their carbon emissions from regular season travel. Using ArcGIS to map the flight paths along great circle routes, the distance of flights to opponents’ cities was calculated to total the number of miles traveled in the 2008 season. The price of offsetting this carbon was estimated using the calculators of carbon offset retailers, such as Native Energy, a Vermont-based retailer. This project provides the potential costs of offsetting the carbon emitted from Red Sox air travel. To take the lead in the future of the Northeast, the Red Sox should begin to consider their contribution to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased fuel economy and driveability of modern internal combustion engine vehicles (ICEVs) are the result of the application of advanced digital electronics to control the operation of the internal combustion engine (ICE). Microprocessors (and micro controllers) play a key role in the engine control, by precisely controlling the amount of both air and fuel admitted into the cylinders. Air intake is controlled by utilizing a throttle valve equipped with a motor and gear mechanism as actuator, and a sensor enabling the measurement of the angular position of the blades. This paperwork presents a lab setup that allows students to control the throttle position using a microcontroller that runs a program developed by them. A commercial throttle body has been employed, whereas a power amplifier and a microcontroller board have been hand assembled to complete the experimental setup. This setup, while based in a high-tech, microprocessor-based solution for a real-world, engine operation optimization problem, has the potential to engage students around a hands-on multidisciplinary lab activity and ignite their interest in learning fundamental and advanced topics of microprocessors systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European renewable energy directive 2009/28/EC (E.C. 2009) provides a legislative framework for reducing GHG emissions by 20%, while achieving a 20% share of energy from renewable sources by 2020. Perennial energy crops could significantly contribute to limit GHG emissions through replacing equivalent fossil fuels and by sequestering a considerable amount of carbon into the soil through the large amounts of belowground biomass produced. The objective of this study is to evaluate the effects of land use change that perennial energy crops have on croplands (switchgrass) and marginal grasslands (miscanthus). For that purpose above and belowground biomass, SOC variation and Net Ecosystem Exchange were evaluated after five years of growth. At aboveground level both crops produced high biomass under cropland conditions as well as under marginal soils. At belowground level they also produced large amounts of biomass, but no significant influences on SOC in the upper layer (0-30 cm) were found. This is probably because of the "priming effect" that caused fast carbon substitution. In switchgrass only it was found a significant SOC increase in deeper layers (30-60 cm), while in the whole soil profile (0-60 cm) SOC increased from 42 to 51 ha-1. However, the short experimental periods (for both switchgrass and miscanthus), in which land use change was evaluated, do not permit to determine the real capacity of perennial energy crops to accumulate SOC. In conclusion the large amounts of belowground biomass enhanced the SOC dynamic through the priming effect resulting in increased SOC in cropland but not in marginal grassland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is a PhD dissertation proposal to study the in-cylinder temperature and heat flux distributions within a gasoline turbocharged direct injection (GTDI) engine. Recent regulations requiring automotive manufacturers to increase the fuel efficiency of their vehicles has led to great technological achievements in internal combustion engines. These achievements have increased the power density of gasoline engines dramatically in the last two decades. Engine technologies such as variable valve timing (VVT), direct injection (DI), and turbocharging have significantly improved engine power-to-weight and power-to-displacement ratios. A popular trend for increasing vehicle fuel economy in recent years has been to downsize the engine and add VVT, DI, and turbocharging technologies so that a lighter more efficient engine can replace a larger, heavier one. With the added power density, thermal management of the engine becomes a more important issue. Engine components are being pushed to their temperature limits. Therefore it has become increasingly important to have a greater understanding of the parameters that affect in-cylinder temperatures and heat transfer. The proposed research will analyze the effects of engine speed, load, relative air-fuel ratio (AFR), and exhaust gas recirculation (EGR) on both in-cylinder and global temperature and heat transfer distributions. Additionally, the effect of knocking combustion and fuel spray impingement will be investigated. The proposed research will be conducted on a 3.5 L six cylinder GTDI engine. The research engine will be instrumented with a large number of sensors to measure in-cylinder temperatures and pressures, as well as, the temperature, pressure, and flow rates of energy streams into and out of the engine. One of the goals of this research is to create a model that will predict the energy distribution to the crankshaft, exhaust, and cooling system based on normalized values for engine speed, load, AFR, and EGR. The results could be used to aid in the engine design phase for turbocharger and cooling system sizing. Additionally, the data collected can be used for validation of engine simulation models, since in-cylinder temperature and heat flux data is not readily available in the literature..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO2 emissions, CO2 emissions in trade, regional trade balances, and comparative advantage of CO2 emissions. The empirical results not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO2 emissions are created and distributed across regions via domestic production networks. The main finding shows that a region’s CO2 emissions depend on not only its intra-regional production technique, energy use efficiency but also its position and participation degree in domestic and global supply chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta Tesis Doctoral se encuadra en el ámbito de la medida de emisiones contaminantes y de consumo de combustible en motores de combustión interna alternativos cuando se utilizan como plantas de potencia para propulsión de vehículos ligeros de carretera, y más concretamente en las medidas dinámicas con el vehículo circulando en tráfico real. En este ámbito, el objetivo principal de la Tesis es estudiar los problemas asociados a la medición en tiempo real con equipos embarcados de variables medioambientales, energéticas y de actividad, de vehículos ligeros propulsados por motores térmicos en tráfico real. Y como consecuencia, desarrollar un equipo y una metodología apropiada para este objetivo, con el fin de realizar consiguientemente un estudio sobre los diferentes factores que influyen sobre las emisiones y el consumo de combustible de vehículos turismo en tráfico real. La Tesis se comienza realizando un estudio prospectivo sobre los trabajos de otros autores relativos al desarrollo de equipos portátiles de medida de emisiones (Portable Emission Measurement Systems – PEMS), problemas asociados a la medición dinámica de emisiones y estudios de aplicación en tráfico real utilizando este tipo de equipos. Como resultado de este estudio se plantea la necesidad de disponer de un equipo específicamente diseñado para ser embarcado en un vehículo que sea capaz de medir en tiempo real las concentraciones de emisiones y el caudal de gases de escape, al mismo tiempo que se registran variables del motor, del vehículo y del entorno como son la pendiente y los datos meteorológicos. De esta forma se establecen las especificaciones y condiciones de diseño del equipo PEMS. Aunque al inicio de esta Tesis ya existían en el mercado algunos sistemas portátiles de medida de emisiones (PEMS: Portable Emissions Measurement Systems), en esta Tesis se investiga, diseña y construye un nuevo sistema propio, denominado MIVECO – PEMS. Se exponen, discuten y justifican todas las soluciones técnicas incorporadas en el sistema que incluyen los subsistema de análisis de gases, subsistemas de toma de muestra incluyendo caudalímetro de gases de escape, el subsistema de medida de variables del entorno y actividad del vehículo y el conjunto de sistemas auxiliares. El diseño final responde a las hipótesis y necesidades planteadas y se valida en uso real, en banco de rodillos y en comparación con otro equipos de medida de emisiones estacionarios y portátiles. En esta Tesis se presenta también toda la investigación que ha conducido a establecer la metodología de tratamiento de las señales registradas en tiempo real que incluye la sincronización, cálculos y propagación de errores. La metodología de selección y caracterización de los recorridos y circuitos y de las pautas de conducción, preparación del vehículo y calibración de los equipos forma también parte del legado de esta Tesis. Para demostrar la capacidad de medida del equipo y el tipo de resultados que pueden obtenerse y que son útiles para la comunidad científica, y las autoridades medioambientales en la parte final de esta Tesis se plantean y se presentan los resultados de varios estudios de variables endógenas y exógenas que afectan a las emisiones instantáneas y a los factores de emisión y consumo (g/km) como: el estilo de conducción, la infraestructura vial, el nivel de congestión del tráfico, tráfico urbano o extraurbano, el contenido de biocarburante, tipo de motor (diesel y encendido provocado), etc. Las principales conclusiones de esta Tesis son que es posible medir emisiones másicas y consumo de motores de vehículos en uso real y que los resultados permiten establecer políticas de reducción de impacto medio ambiental y de eficiencia energética, pero, se deben establecer unas metodologías precisas y se debe tener mucho cuidado en todo el proceso de calibración, medida y postratamientos de los datos. Abstract This doctoral thesis is in the field of emissions and fuel consumption measurement of reciprocating internal combustion engines when are used as power-trains for light-duty road vehicles, and especially in the real-time dynamic measurements procedures when the vehicle is being driven in real traffic. In this context, the main objective of this thesis is to study the problems associated with on-board real-time measuring systems of environmental, energy and activity variables of light vehicles powered by internal combustion engines in real traffic, and as a result, to develop an instrument and an appropriate methodology for this purpose, and consequently to make a study of the different factors which influence the emissions and the fuel consumption of passenger cars in real traffic. The thesis begins developing a prospective study on other authors’ works about development of Portable Emission Measurement Systems (PEMS), problems associated with dynamic emission measurements and application studies on actual traffic using PEMS. As a result of this study, it was shown that a measuring system specifically designed for being on-board on a vehicle, which can measure in real time emission concentrations and exhaust flow, and at the same time to record motor vehicle and environment variables as the slope and atmospheric data, is needed; and the specifications and design parameters of the equipment are proposed. Although at the beginning of this research work there were already on the market some PEMS, in this Thesis a new system is researched, designed and built, called MIVECO – PEMS, in order to meet such measurements needs. Following that, there are presented, discussed and justify all technical solutions incorporated in the system, including the gas analysis subsystem, sampling and exhaust gas flowmeter subsystem, the subsystem for measurement of environment variables and of the vehicle activity and the set of auxiliary subsystems. The final design meets the needs and hypotheses proposed, and is validated in real-life use and chassis dynamometer testing and is also compared with other stationary and on-board systems. This thesis also presents all the research that has led to the methodology of processing the set of signals recorded in real time including signal timing, calculations and error propagation. The methodology to select and characterize of the routes and circuits, the driving patterns, and the vehicle preparation and calibration of the instruments and sensors are part of the legacy of this thesis. To demonstrate the measurement capabilities of the system and the type of results that can be obtained and that are useful for the scientific community and the environmental authorities, at the end of this Thesis is presented the results of several studies of endogenous and exogenous variables that affect the instantaneous and averaged emissions and consumption factors (g/km), as: driving style, road infrastructure, the level of traffic congestion, urban and extra-urban traffic, biofuels content, type of engine (diesel or spark ignition) etc. The main conclusions of this thesis are that it is possible to measure mass emissions and consumption of vehicle engines in actual use and that the results allow us to establish policies to reduce environmental impact and improve energy efficiency, but, to establish precise methodologies and to be very careful in the entire process of calibration, measurement and data post-treatment is necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From this information, the total storage capacity per zone is evaluated and some strategies for EV aggregator are proposed, allowing the aggregator to fulfill bids on the electricity markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.