920 resultados para Capacity Supply Agreement, power unit
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems
Resumo:
The increasing integration of larger amounts of wind energy into power systems raises important operational issues, such as the balance between power generation and demand. The pumped storage hydro (PSH) units are one possible solution to mitigate this problem, once they can store the excess of energy in the periods of higher generation and lower demand. However, the behaviour of a PSH unit may differ considerably from the expected in terms of wind power integration when it operates in a liberalized electricity market under a price-maker context. In this regard, this paper models and computes the optimal PSH weekly scheduling in a price-taker and price-maker scenarios, either when the PSH unit operates in standalone and integrated in a portfolio of other generation assets. Results show that the price-maker standalone PSH will integrate less wind power in comparison with the price-taker situation. Moreover, when the PSH unit is integrated in a portfolio with a base load power plant, the role of the price elasticity of demand may completely change the operational profile of the PSH unit. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
ABSTRACT OBJECTIVE To analyze Government strategies for reducing prices of antiretroviral medicines for HIV in Brazil. METHODS Analysis of Ministry of Health purchases of antiretroviral medicines, from 2005 to 2013. Expenditures and costs of the treatment per year were analyzed and compared to international prices of atazanavir. Price reductions were estimated based on the terms of a voluntary license of patent rights and technology transfer in the Partnership for Productive Development Agreement for atazanavir. RESULTS Atazanavir, a patented medicine, represented a significant share of the expenditures on antiretrovirals purchased from the private sector. Prices in Brazil were higher than international references, and no evidence was found of a relationship between purchase volume and price paid by the Ministry of Health. Concerning the latest strategy to reduce prices, involving local production of the 200 mg capsule, the price reduction was greater than the estimated reduction. As for the 300 mg capsule, the amounts paid in the first two years after the Partnership for Productive Development Agreement were close to the estimated values. Prices in nominal values for both dosage forms remained virtually constant between 2011 (the signature of the Partnership for Productive Development Agreement), 2012 and 2013 (after the establishment of the Partnership). CONCLUSIONS Price reduction of medicines is complex in limited-competition environments. The use of a Partnership for Productive Development Agreement as a strategy to increase the capacity of local production and to reduce prices raises issues regarding its effectiveness in reducing prices and to overcome patent barriers. Investments in research and development that can stimulate technological accumulation should be considered by the Government to strengthen its bargaining power to negotiate medicines prices under a monopoly situation.
Resumo:
The increasing integration of wind energy in power systems can be responsible for the occurrence of over-generation, especially during the off-peak periods. This paper presents a dedicated methodology to identify and quantify the occurrence of this over-generation and to evaluate some of the solutions that can be adopted to mitigate this problem. The methodology is applied to the Portuguese power system, in which the wind energy is expected to represent more than 25% of the installed capacity in a near future. The results show that the pumped-hydro units will not provide enough energy storage capacity and, therefore, wind curtailments are expected to occur in the Portuguese system. Additional energy storage devices can be implemented to offset the wind energy curtailments. However, the investment analysis performed show that they are not economically viable, due to the present high capital costs involved.
Resumo:
The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.
Resumo:
The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
The objective of this dissertation is to investigate the effect wind energy has on the Electricity Supply Industry in Ireland. Wind power generation is a source of renewable energy that is in abundant supply in Ireland and is fast becoming a resource that Ireland is depending on as a diverse and secure of supply of energy. However, wind is an intermittent resource and coupled with a variable demand, there are integration issues with balancing demand and supply effectively. To maintain a secure supply of electricity to customers, it is necessary that wind power has an operational reserve to ensure appropriate backup for situations where there is low wind but high demand. This dissertation examines the affect of this integration by comparing wind generation to that of conventional generation in the national grid. This is done to ascertain the cost benefits of wind power generation against a scenario with no wind generation. Then, the analysis examines to see if wind power can meet the pillars of sustainability. This entails looking at wind in a practical scenario to observe how it meets these pillars under the criteria of environmental responsibility, displacement of conventional fuel, cost competitiveness and security of supply.
Resumo:
The Great Tohoku-Kanto earthquake and resulting tsunami has brought considerable attention to the issue of the construction of new power plants. We argue in this paper, nuclear power is not a sustainable solution to energy problems. First, we explore the stock of uranium-235 and the different schemes developed by the nuclear power industry to exploit this resource. Second, we show that these methods, fast breeder and MOX fuel reactors, are not feasible. Third, we show that the argument that nuclear energy can be used to reduce CO2 emissions is false: the emissions from the increased water evaporation from nuclear power generation must be accounted for. In the case of Japan, water from nuclear power plants is drained into the surrounding sea, raising the water temperature which has an adverse affect on the immediate ecosystem, as well as increasing CO2 emissions from increased water evaporation from the sea. Next, a short exercise is used to show that nuclear power is not even needed to meet consumer demand in Japan. Such an exercise should be performed for any country considering the construction of additional nuclear power plants. Lastly, the paper is concluded with a discussion of the implications of our findings.
Resumo:
This Agreement made and entered i into this 1 1st day of July 2007, at Des Moines, Iowa, pursuant to the provisions of Chapter 20 of the Iowa Code, by and between the State of Iowa (hereinafter referred to as the Employer) and UE Local 893/Iowa United Professionals, and its appropriate affiliated locals, as representatives of employees employed by the State of Iowa, as set forth specifically in Appendix A (hereinafter referred to as the Union).
Resumo:
This Agreement made and entered i into this 1 1st day of July 2009, at Des Moines, Iowa, pursuant to the provisions of Chapter 20 of the Iowa Code, by and between the State of Iowa (hereinafter referred to as the Employer) and UE Local 893/Iowa United Professionals, and its appropriate affiliated locals, as representatives of employees employed by the State of Iowa, as set forth specifically in Appendix A (hereinafter referred to as the Union).