959 resultados para Cancer in animals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During my PhD, my aim was to provide new tools to increase our capacity to analyse gene expression patterns, and to study on a large-scale basis the evolution of gene expression in animals. Gene expression patterns (when and where a gene is expressed) are a key feature in understanding gene function, notably in development. It appears clear now that the evolution of developmental processes and of phenotypes is shaped both by evolution at the coding sequence level, and at the gene expression level.Studying gene expression evolution in animals, with complex expression patterns over tissues and developmental time, is still challenging. No tools are available to routinely compare expression patterns between different species, with precision, and on a large-scale basis. Studies on gene expression evolution are therefore performed only on small genes datasets, or using imprecise descriptions of expression patterns.The aim of my PhD was thus to develop and use novel bioinformatics resources, to study the evolution of gene expression. To this end, I developed the database Bgee (Base for Gene Expression Evolution). The approach of Bgee is to transform heterogeneous expression data (ESTs, microarrays, and in-situ hybridizations) into present/absent calls, and to annotate them to standard representations of anatomy and development of different species (anatomical ontologies). An extensive mapping between anatomies of species is then developed based on hypothesis of homology. These precise annotations to anatomies, and this extensive mapping between species, are the major assets of Bgee, and have required the involvement of many co-workers over the years. My main personal contribution is the development and the management of both the Bgee database and the web-application.Bgee is now on its ninth release, and includes an important gene expression dataset for 5 species (human, mouse, drosophila, zebrafish, Xenopus), with the most data from mouse, human and zebrafish. Using these three species, I have conducted an analysis of gene expression evolution after duplication in vertebrates.Gene duplication is thought to be a major source of novelty in evolution, and to participate to speciation. It has been suggested that the evolution of gene expression patterns might participate in the retention of duplicate genes. I performed a large-scale comparison of expression patterns of hundreds of duplicated genes to their singleton ortholog in an outgroup, including both small and large-scale duplicates, in three vertebrate species (human, mouse and zebrafish), and using highly accurate descriptions of expression patterns. My results showed unexpectedly high rates of de novo acquisition of expression domains after duplication (neofunctionalization), at least as high or higher than rates of partitioning of expression domains (subfunctionalization). I found differences in the evolution of expression of small- and large-scale duplicates, with small-scale duplicates more prone to neofunctionalization. Duplicates with neofunctionalization seemed to evolve under more relaxed selective pressure on the coding sequence. Finally, even with abundant and precise expression data, the majority fate I recovered was neither neo- nor subfunctionalization of expression domains, suggesting a major role for other mechanisms in duplicate gene retention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer mortality among children in Switzerland was analysed using (1) age-specific and age-standardized (0-14) rates from 1951 to 1984 and (2) comparison of observed numbers of deaths over the period 1960-1984 with expected one obtained by application of age-specific rates for the period 1951-1959 to the population structure of subsequent 5-year calendar periods. Certified mortality fell about 60% for leukaemias, 21% for lymphomas, 66% for Wilms' tumours, 40% for bone sarcomas and 30% for other and unspecified sites. Thus, the overall decline in childhood cancer mortality in Switzerland was around 45%, slightly more marked in females (-48%) than in males (-42%), and more pronounced in younger children (over 50% before age 5). This corresponds to an absolute number of about 50 deaths from childhood cancer per year avoided in the early 1980s as compared with expected numbers computed on the basis of rates registered in the 1950s (30 deaths per year for leukaemias alone). The estimated total number of deaths avoided during the whole period 1960-1980 was 820 (430 leukaemias alone). Trends in childhood cancer mortality persisted steadily downwards in the early 1980s, suggesting that further progress is being achieved in the treatment of these neoplasms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hospital-based case-control study of 86 cases of thyroid cancer and 317 controls was done in the Swiss Canton of Vaud. Patients with thyroid cancer tended to be better educated (odds ratio [OR] 2.1 for greater than or equal to 14 vs. less than or equal to 8 years of education 95% CI 1.1-4.1) and of higher social class than controls. Cases more often had a history of benign thyroid nodules (OR 25.2, 95% CI 7.6-83.6) and non-toxic goitre (OR 5.3, 95% CI 2.5-11.2). Furthermore, patients with thyroid cancer were more likely to have resided in endemic goitre areas (OR 1.7, 95% CI 1.0-3.0) and to have had first-degree relatives affected by benign thyroid disease (OR 3.9, 95% CI 2.1-7.1). Therefore, this study offers quantitative evidence of the association between various thyroid diseases and the risk of thyroid cancer which, despite difficulties in the classification of benign and malignant thyroid diseases, is remarkably consistent in studies from different countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the early 1980s high dose chemotherapy with autologous hematopoietic stem cell support was adopted by many oncologists as a potentially curative option for solid tumors, supported by a strong rationale from laboratory studies and apparently convincing results of early phase II studies. As a result, the number and size of randomized trials comparing this approach with conventional chemotherapy initiated (and often abandoned before completion) to prove or disprove its value was largely insufficient. In fact, with the possible exception of breast carcinoma, the benefit of a greater escalation of dose of chemotherapy with stem cell support in solid tumors is still unsettled and many oncologists believe that this approach should cease. In this article, we critically review and comment on the data from studies of high dose chemotherapy so far reported in adult patients with small cell lung cancer, ovarian cancer, germ cell tumors and sarcomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, androgen deprivation therapy (ADT) has a well-defined role when administered together with radiotherapy (RT): neo-adjuvant and concurrent combination for intermediate risk-disease and adjuvant therapy for high risk disease. Evidence of this association was generated by randomized trials designed and led approximately 30 years ago; thus the question which arises is how relevant and portable are these data in our current clinical practice? In the present review, we examine the pitfalls of these published randomized controlled trials, their relevance to present daily clinics, where high-dose external beam RT or brachytherapy is applied, as well as the adoption of ADT in patients with concomitant cardiovascular disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The Valais's cancer registry (RVsT) of the Observatoire valaisan de le santé (OVS) and the department of oncology of Valais's Hospital conducted a study on the epidemiology and pattern of care of colorectal cancer in Valais. Colorectal cancer is the third cause of death by cancer in Switzerland with about 1600 deaths per year. It is the third most frequent cancer for males and the second most frequent for females in Valais. The number of new colorectal cancer cases (average per year) increased between 1989 and 2009 for males as well as for females in Valais. The number of colorectal cancer death cases (average per year) slightly increased between 1989 and 2009 for males as well as for females in Valais. Age-standardized rates of incidence were stable for males and females in Valais and in Switzerland between 1989 and 2009, while age-standardized rates of mortality decreased for males and females in Valais and Switzerland. Results: 774 cases were recorded (59% males). Median age at diagnosis was 70 years old. Most of cancers were invasive (79%) and the main localization was the colon (71%). The most frequent mode of detection was a consultation for non emergency symptoms (75%), but almost 10% of patients consulted in emergency. 82% of patients were treated within 30 days from diagnosis. 90% of the patients were treated by surgery alone or with combined treatment. The first treatment was surgery, including endoscopic resection in 86% of the cases. The treatment was different according to the localization and the stage of the cancer. Survival rate was 95% at 30 days and 79% at one year. The survival was dependent on the stage and the age at diagnosis. Cox model shows an association between mortality and age (better survival for young people) and between mortality and stage (better survival for the lower stages). Methods: RVsT collects information on all cancer cases since 1989 for people registered in the communes of Valais. RVsT has an authorization to collect non anonymized data. All new incident cancers are coded according to the International Classification of Diseases for Oncology (ICD-O-3) and the stages are coded according to the TNM classification. We studied all cases of in situ and invasive colorectal cancers diagnosed between 2006 and 2009 and registered routinely at the RVsT. We checked for data completeness and if necessary sent questionnaires to avoid missing data. A distance of 15 cm has been chosen to delimitate the colon (sigmoid) and the rectal cancers. We made an active follow-up for vital status to have a valid survival analysis. We analyzed the characteristics of the tumors according to age, sex, localization and stage with stata 9 software. Kaplan-Meier curves were generated and Cox model were fitted to analyze survival. Conclusion: The characteristics of patients and tumors and the one year survival were similar to those observed in Switzerland and some European countries. Patterns of care were close to those recommended in guidelines. Routine data recorded in a cancer registry can be used, not only to provide general statistics, but also to help clinicians assess local practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. In 2003 data will be collected on an estimated 14,700 new cancers among Iowa residents. A follow-up program tracks more than 97 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. Since 1973 the Iowa Registry has been funded by the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI). Iowa represents rural and midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. In 2004 data will be collected on an estimated 15,200 new cancers among Iowa residents. A follow-up program tracks more than 97 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. Since 1973 the Iowa Registry has been funded by the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI). Iowa represents rural and midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa is also providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 97 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2005 data will be collected on an estimated 15,800 new cancers among Iowa residents. Beginning with 2005 Cancer in Iowa, in situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2006, an estimated 6,300 Iowans will die from cancer, 14 times the number caused by auto fatalities. Cancer is second only to heart disease as a cause of death. These projections are based upon mortality data the State Health Registry of Iowa receives from the Iowa Department of Public Health. The Registry has been recording the occurrence of cancer in Iowa since 1973, and is one of fourteen population-based registries and three supplementary registries nationwide providing data to the National Cancer Institute. In 2006 an estimated 16,000 cancers will be newly diagnosed among Iowa residents. With 2006 Cancer in Iowa the Registry makes a general report to the public on the status of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2007 data will be collected on an estimated 15,700 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. In addition, the Registry receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for followup and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2008 data will be collected on an estimated 16,000 new cancers among Iowa residents. Noninvasive cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded primarily by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many National Cancer Institute publications. Beginning in 1990 a small percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2009 data will be collected on an estimated 16,000 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded primarily by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many National Cancer Institute publications. Beginning in 1990 between 5 and 10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2010 data will be collected on an estimated 16,400 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2011 data will be collected on an estimated 16,500 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many National Cancer Institute publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.