965 resultados para Calibration.
Resumo:
A novel phase-step calibration technique is presented on the basis of a two-run-times-two-frame phase-shift method. First the symmetry factor M is defined to describe the distribution property of the distorted phase due to phase-shifter miscalibration; then the phase-step calibration technique, in which two sets of two interferograms with a straight fringe pattern are recorded and the phase step is obtained by calculating M of the wrapped phase map, is developed. With this technique, a good mirror is required, but no uniform illumination is needed and no complex mathematical operation is involved. This technique can be carried out in situ and is applicable to any phase shifter, whether linear or nonlinear. (c) 2006 Optical Society of America.
Resumo:
Adjustment of experimental channels to give any specified pattern of water depth or velocity is complex and tedious because it involves a number of variables. Since some variables are not controllable and variables may interact, valve settings of the Grassholme channels were initially determined on an ad hoc basis to suit individual experiments. This method was used during 1982 but additional observations were made in order to gain more detailed understanding of the channel system and, as far as possible, to develop a guide to future short-cuts in attaining suitable channel settings for any given purpose. This report describes calibration of the Grassholme channels (using water of the Grassholme Reservoir) for the biological experiments of spring - summer 1982. The main variables that are discussed are valve turns and discharge and velocity and depth. It also seeks to establish relationships which will be of value in future managment of the channels for experimental purposes.
Resumo:
A new calibration method for a photoelastic modulator is proposed. The calibration includes a coarse calibration and a fine calibration. In the coarse calibration, the peak retardation of the photoelastic modulator is set near 1.841 rad. In the fine calibration, the value of the zeroth Bessel function is obtained. The zeroth Bessel function is approximated as a linear equation to directly calculate the peak retardation. In experiments, the usefulness of the calibration method is verified and the calibration error is less than 0.014 rad. The calibration is immune to the intensity fluctuation of the light source and independent of the circuit parameters. The method specially suits the calibration of a photoelastic modulator with a peak retardation of less than a half-wavelength. (c) 2007 Optical Society of America.