995 resultados para Calculated, TEX86
Resumo:
Pollen and stable carbon (d13C) and hydrogen (dD) isotope ratios of terrestrial plant wax from the South Atlantic sediment core, ODP Site 1085, is used to reconstruct Miocene to Pliocene changes of vegetation and rainfall regime of western southern Africa. Our results reveal changes in the relative amount of precipitation and indicate a shift of the main moisture source from the Atlantic to the Indian Ocean during the onset of a major aridification 8 Ma ago. We emphasise the importance of declining precipitation during the expansion of C4 and CAM (mainly succulent) vegetation in South Africa. We suggest that the C4 plant expansion resulted from an increased equator-pole temperature gradient caused by the initiation of strong Atlantic Meridional Overturning Circulation following the shoaling of the Central American Seaway during the Late Miocene.
Resumo:
Subpolar regions are key areas to study natural climate variability, due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37, TEX86 and LDI) on their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long chain alkyl diols were below detection limit in most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes i.e. high fluxes of alkenones and GDGTs were measured during late spring-summer, and high fluxes of long chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3°C for UK'37) and positive (up to 5°C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86 derived temperatures correspond with both annual and winter mean 0-200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments, and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols, suggest that Proboscia diatoms are the major sources of long chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.