982 resultados para Calcination temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical activation is one of the most effective method for obtaining highly disperse system due to mechanical action stress fields form in solids during milling procedure. This effect results in changes of free energy, leading to release of heat, formation of a new surface, formation of different crystal lattice defects and initiation of solid-state chemical reaction. The accumulated deformation energy determines irreversible changes of crystal structure and consequently microstructure resulting in the change of their properties. Mechanochemical processing route has been developed recently for the production of intermetallic and alloy compounds. The intrinsic advantage of this process is that the solid-state reaction is activated due to mechanical energy instead of the temperature. It was shown that the chemical reactivity of starting materials could be improved significantly after mechanochemical activation and, subsequently, the calcination temperature was reduced. Besides, it was apparent that the mechanochemical treatment could enhance the reactivity of constituent oxides; however, the sintering process could not be avoided to develop the desired ceramics. A novel mechanochemical technique for synthesis of fine-grained perovskite structured powders has shown that it is possible to form perovskite at room temperature. The effect of milling on the formation of perovskite structure of barium titanate (BT), lead titanate (PT), PZT, PZN, magnesium niobate (PMN) and LM ceramic materials was analyzed. The dielectric properties of sintered ceramics are comparable with those prepared by other methods in the literature. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two series of lead zirconate titanate (PZT) ceramics with composition Zr/Ti approximate to 53/47 have been prepared by the organic solution route. The effects on the electrical properties of calcination temperature in one series and of sintering time period in the other were examined. Dielectric constant, electrical conductivity and impedance spectroscopy results differed from one series to the other, probably due to differences in structure of the precursor powders, as seen by X-ray diffraction. Tetragonal and rhombohedral phases predominate in the powders used, respectively, in the calcined and sintered series. Physical and electrical behavior of ceramics prepared from predominantly rhombohedral powder suggests the evaporation of PbO. The presence of two semi-circles in impedance plots leads to the association of the low frequency semi-circle to the presence of PbO, which, apparently, was not eliminated from ceramics prepared from predominantly tetragonal powder. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrodes of RhxTi(1-x) O-y nominal composition were prepared by thermal decomposition of the chloride or nitrate precursor salts dissolved in strongly acidic medium and applied by brush to both sides of a Tidegrees support. A systematic study of the influence of calcination temperature and time as well as oxygen flux was conducted. The coatings were characterised by SEM, EDAX, XRD, open circuit potential measurements and cyclic voltammetry (CV). Visible-ultraviolet spectrophotometry was employed to identify the chemical form of the precursor in solution while thermogravimetric analysis (TGA) was used to assess the decomposition temperature ranges. Optimisation of the coating preparation parameters showed coatings obtained from [Rh(H2O)(6)](NO3)(3) precursor dissolved in HNO3 1:2 (v/v) and fired at 430 degreesC for 2 h in a 5 1 min (-1) oxygen stream-furnished stable electrodes having the highest electrochemically active surface area. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnesium and zinc ferrites have been prepared by the polymeric precursor method. The organic material decomposition was studied by thermogravimetry (TG) and differential thermal analysis (DTA). The variation of crystalline phases and particle morphology with calcination temperature were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The colors of the ferrites were evaluated using colorimetry. Magnesium ferrite crystallizes above 800 degrees C, presenting a yellow-orange color with a reflectance peak at the 600-650 nm range, while zinc ferrite crystallizes at 600 degrees C, with a reflectance peak between 650-700 nm, corresponding to the red-brick color.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the Rietveld method, phases of ceria-doped zirconia, calcined at temperatures of 600 and 900 degrees C, were quantitatively analysed for different concentrations of ceria. The results show that the stabilization of zirconia depends on the dopant concentration and calcination temperature. Moreover, the theoretical calculation using the ab initio Hartree-Fock-Roothaan method indicates that the most stable phases for ceria-stabilized zirconia are cubic or tetragonal, in accordance with experimental results. (C) 1999 Kluwer Academic Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymeric precursor method based on the Pechini process was successfully used to synthesize zirconia-12 mol% ceria ceramic powders, the influence of the main process variables (citric acid-ethylene glycol ratio, citric acid-total oxides ratio and calcination temperature) on phase formation and powder morphology (surface area and crystallite size) were investigated. The thermal decomposition behavior of the precursor is presented. X-ray diffraction (XRD) patterns of powders revealed a crystalline tetragonal zirconia single-phase, with crystallite diameter ranging from 6 to 15 nm. The BET surface areas were relatively high, reaching 95 m(2) g(-1) Nitrogen adsorption/desorption on the powders suggested that nonaggregated powders could be attained, depending on the synthesis conditions. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cobalt oxides, specially the ones with perovskite structure, are of a high technological interest, due to their interesting optical, electrical and magnetic properties. La(1 -x)Ca(x)CoO(3) powder samples were synthesized by the polymeric precursor method, with x varying from 0 to 0.4. The powder precursors were characterized by TG/DTA, XRD and IR. The TG curves showed several thermal decomposition steps; the first one is ascribed to the loss of water and the remaining steps are related to the combustion of the organic matter. The XRD patterns indicated only the presence of the perovskite phase. Moreover, the structure changes from rhombohedral to cubic, as calcium is added to the perovskite and the calcination temperature increases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase formation mechanism, as well as the morphotropic phase boundary, of lead zirconate titanate (PZT) processed by a partial oxalate method was investigated by simultaneous thermal analysis (TG-DTA) and by qualitative and quantitative X-ray diffraction (XRD). The results show that the ZrxTi1-xO2 (ZT) phase reacts with PbO forming the PZT phase without intermediate phases. XRD analysis showed the coexistence of rhombohedral and tetragonal phases for 0.47 ≤ x ≤ 0.55 with the phase boundary composition for x = 0.51. For low calcination temperatures, preferential formation of the PZT rhombohedral phase was observed. A model for phase formation of PZT by the partial oxalate method is proposed based on the existence of two interfaces of reaction (PbO-PZT and PZT-ZT) and diffusion of cations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pure BBN powders and with addition of 1 and 2 wt% in excess of bismuth were obtained by Pechini Method. The powders calcined at 300°C/4h were analyzed by TG/DTA to study the temperature of organic matter decomposition. A systematic study of calcination temperature and time to the formation of the BBN phase was performed and the phase formation was accompanied by XRD. The calcined powders at 800°C during 2h were analyzed by infrared spectroscopy and by BET. The powders were isostaticaly pressed and sintered at temperatures ranging from 900°C to 1000°C. The ceramics were characterized by XRD to control the crystalline phase and by SEM to analyze the microstructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)