1000 resultados para Calcidiscus leptoporus flux
Resumo:
The three sites (717, 718, and 719) drilled on the distal Bengal Fan during ODP Leg 116 cored turbidite sediments almost exclusively. Calcareous nannofossils were recovered sporadically and, although all of them probably have been redeposited, it is possible to date the sediments at all three sites with reasonable confidence. Site 717 penetrated the uppermost middle Miocene Catinaster coalitus highest occurrence datum and represents the most nearly continuous succession of turbidites. Site 718 penetrated the lower Miocene, well below the Helicosphaera ampliaperta highest occurrence datum, but this site contains a major late Pliocene to mid-Pleistocene hiatus. Site 719, the shallowest hole, penetrated only into the upper Miocene. Identification of several critical lowest occurrence datums allows using the poorly constrained but more numerous highest occurrence datums for comparison with the model succession (zonal markers) and thereby to derive a reasonably accurate time framework for the sediments.
Resumo:
Drilling at three DSDP drill sites on the western margin of the Pacific Ocean off the coast of Japan yielded thick sequences of hemipelagic muds and clays generally depleted of calcareous nannofossils. Operations at Sites 582 and 583 recovered dominantly Quaternary sediments. The Pliocene/Pleistocene boundary was reached near the bottom of Hole 582B. At both sites, preserved coccolith populations contained generally few to common nannoliths. The effects of reworking were evident throughout most sections at these two sites. Drilling at Site 584 in the Japan Trench recovered Holocene to Miocene sediments. Populations of nannofossils from this site were generally more depleted than those from the two Nankai Trough sites. Reworking within these sections appears to be much less severe than in samples from the more southern sites.
Resumo:
During Ocean Drilling Program Leg 149, five sites were drilled on the Iberia Abyssal Plain, west of the Iberian Peninsula. Five holes (Holes 897A, 897C, 898A, 899A, and 900A) yielded Pliocene-Pleistocene sediments, which consist mainly of turbidites. Among these, Holes 897C and 898A yielded significant Pliocene-Pleistocene sediments that provided a high-resolution nannofossil biostratigraphy essential for locating paleomagnetic polarity events and for interpreting the age and frequency of turbidite sedimentation in the Iberia Abyssal Plain. Pliocene-Pleistocene nannofossils recovered during Leg 149 are generally abundant and well to moderately preserved. Although reworking is evident in most samples, the Pliocene-Pleistocene nannofossils proved quite reliable for dating the sediments. Most Pleistocene zonal boundaries proposed by S. Gartner in 1977 and the Pliocene standard zonal boundaries proposed by E. Martini in 1971 were easily recognized. In addition, several other nannofossil events proposed by D. Rio et al. in 1990 and by T. Sato and T. Takayama in 1992 were recognized and proved valuable for improving the resolution of Pliocene-Pleistocene nannofossil biostratigraphy. The Pliocene-Pleistocene nannofossil biostratigraphic results of Holes 897C and 900A coincide rather well with the discerned paleomagnetic polarity events. As a result, the combination of nannofossil biostratigraphic and paleomagnetic studies provides important information for fulfilling the second objective of this leg: to determine the history of turbidite sedimentation in the Iberia Abyssal Plain. The general trend of sedimentation rates inferred by nannofossil biostratigraphy indicates that sedimentation rates increase from the continental margin to the deep sea along with increasing water depth.
Resumo:
Three of the six DSDP Leg 77 sites drilled in the western approaches to the Straits of Florida yielded thick sequences of Cenozoic sediment rich in calcareous nannofossils. Hiatuses are prominent in each of these continuously cored intervals. A prominent upper Oligocene hiatus, observed at each of these three sites, can be correlated to a large-scale "global" regression event. Other disconformable horizons present in the study area cannot be positively related to sealevel fluctuations and may be caused by a number of factors including local tectonic activity. Paleogene sections are generally marked by thick accumulations within the upper Oligocene Sphenolithus ciperoensis Zone and by a pronounced braarudosphaerid-holococcolith bloom recorded in the lower Oligocene and upper Eocene. This bloom is particularly well developed at Site 540. All samples examined contain abundant nannofossils. Preservation fluctuates throughout the sections from good to poor.
Resumo:
Sites 1096 and 1101, two hemipelagic sediment drift sites on the continental rise off the northwestern Pacific margin of the Antarctic Peninsula, contained calcareous nannofossils in the upper intervals of each site (downhole to 168.37 meters below seafloor [mbsf] in Hole 1096B and 121.1 mbsf in Hole 1101A). The occurrences were sporadic and observed to be confined to fine-grained intervals. These intervals were interpreted on board to be interglacial and often contained foraminifers as well. Calcareous nannofossils exhibited a reliable stratigraphy during an interval when other fossils groups were absent, quite rare, or reworked. In total, nine events and three zones were recognized in this study. The base of the Pleistocene was not recorded with calcareous nannofossils, the oldest datum being the first occurrence of medium Gephyrocapsa spp. at 1.69 Ma. All events have been correlated to the paleomagnetic record for each site.
Resumo:
We provide high-resolution sea surface temperature (SST) and paleoproductivity data focusing on Termination 1. We describe a new method for estimating SSTs based on multivariate statistical analyses performed on modern coccolithophore census data, and we present the first downcore reconstructions derived from coccolithophore assemblages at Ocean Drilling Project (ODP) Site 1233 located offshore Chile. We compare our coccolithophore SST record to alkenone-based SSTs as well as SST reconstructions based on dinoflagellates and radiolaria. All reconstructions generally show a remarkable concordance. As in the alkenone SST record, the Last Glacial Maximum (LGM, 19-23 kyr B.P.) is not clearly defined in our SST reconstruction. After the onset of deglaciation, three major warming steps are recorded: from 18.6 to 18 kyr B.P. (~2.6°C), from 15.7 to 15.3 kyr B.P. (~2.5°C), and from 13 to 11.4 kyr B.P. (~3.4°C). Consistent with the other records from Site 1233 and Antarctic ice core records, we observed a clear Holocene Climatic Optimum (HCO) from ~8-12 kyr B.P. Combining the SST reconstruction with coccolith absolute abundances and accumulation rates, we show that colder temperatures during the LGM are linked to higher coccolithophore productivity offshore Chile and warmer SSTs during the HCO to lower coccolithophore productivity, with indications of weak coastal upwelling. We interpret our data in terms of latitudinal displacements of the Southern Westerlies and the northern margin of the Antarctic Circumpolar Current system over the deglaciation and the Holocene.
Resumo:
Ocean Drilling Program Leg 103 occupied five sites on the Galicia margin, northwest of the Iberian Peninsula. Two holes (Holes 637A and 638B) yielded significant Cenozoic sedimentary sections ranging from late Miocene to late Pleistocene in age. From the nannofossil stratigraphy, one hiatus is recognized in Hole 637A (2.35-2.4 Ma), whereas two hiatuses (one at 1.9-2.6 Ma and another at 3.5-3.7 Ma) are recognized in Hole 638B. Sediment-accumulation rates for the Cenozoic portions of these two holes have been calculated based on the nannofossil datums. The abundance ratios of Coccolithus pelagicus to Discoaster brouweri for Hole 637A show relatively low values and small fluctuations from 2.5 to 6.5 Ma but sharply increase and then widely fluctuate beginning at about 2.5 Ma. This may indicate relatively warmer, more stable surface-water temperatures from 2.5 to 6.5 Ma and cooler, variable surface-water temperatures after 2.5 Ma at Site 637. C. pelagicus/D. brouweri ratios from Hole 638B also show a trend of increasing values with time from late Miocene to late Pliocene, but with more fluctuations and a different pattern from that of Hole 637A.
Resumo:
To assess the paleoceanographic potential of Leg 186 sediments, we investigated Quaternary calcareous nannofossil flora at Sites 1150 and 1151 in the Japan Trench. Because of the frequent occurrence of barren intervals and the lack of oxygen isotope data, a detailed paleoceanography is not feasible for these cores. We limited our study to the upper 26.07 m of the section from Hole 1150A and the upper 21.01 m of the section from Hole 1151C. The studied samples from Cores 186-1150A-1H through 3H are younger than 0.085 Ma. Core 186-1151C-1H (upper 1.92 meters below seafloor [mbsf]) is younger than 0.085 Ma, and samples between 2H-7, 5-7 cm, and 3H-CC, 5-7 cm, (9.99-21.01 mbsf) are older than 0.245 Ma and younger than 0.408 Ma.
Resumo:
Leg 90 of the Deep Sea Drilling Project drilled 18 holes at eight sites (Sites 587-594) on several shallow-water platforms in the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean. The results from an additional hole (Hole 586B) drilled at Site 586 during Leg 89 are included in this report. Together, these sites form a latitudinal traverse which extends from the equator (Site 586) to 45°S (Site 594) and includes all the major water masses from tropical to subantarctic. Samples recovered at these sites range in age from middle Eocene to late Quaternary. The calcareous nannoplankton biostratigraphy for Leg 90 has divided into two parts: part 1, the Neogene and Quaternary of Sites 586-594. (this chapter); and part 2, the Paleogene of Sites 588, 592, and 593 (Martini, 1986). A slightly modified version of the Martini (1971) standard Tertiary and Quaternary zonation scheme was used to make age determinations on over 700 samples. All of the relevant Neogene and Quaternary zone-defining nannoplankton are present at Sites 586-591 (0°-30°S) but become increasingly rare or are absent at Sites 592-594 (35°-45°S). Species diversity increases southward from the equator (Site 586) and reaches a peak at 20°S (Site 587). A decrease at 25°S (Site 588) and 30°S (Sites 589-591) is followed by an increase in species diversity at 35°S (Site 592). South of 35°S, species diversity again decreases and reaches a low at 45 °S (Site 594). Species diversity for all sites as a group generally increases through the early, middle, and late Miocene, reaches a peak in the early Pliocene, then gradually decreases through the late Pliocene and Quaternary