960 resultados para Ca:Mg:K ratio
Resumo:
The sensitivity to temperature of Mg/Ca ratios in the shallow-infaunal benthic foraminifera Uvigerina spp. has been assessed. Core-top calibrations over ~1-20 °C show a range in sensitivity of 0.065-0.084 mmol/mol/°C but few data are available spanning the temperature range anticipated in deep-sea records over glacial-interglacial cycles. In contrast to epibenthic foraminiferal species, carbonate ion saturation appears not to affect Mg/Ca significantly. A method based on estimating the ratio of the temperature sensitivity of foraminiferal Mg/Ca to that of d18Ocalcite shows that sensitivity for Mg/Ca at the high end of the observed core-top range (~0.1 mmol/mol/°C) is required for consistency with LGM-Holocene differences in each property as constrained by independent proxy data. This is supported by a Mg/Ca record for Uvigerina spp. generated for the Southern Ocean over the past 440,000 years from Ocean Drilling Program Site 1123 (Chatham Rise, New Zealand). The record shows variability that correlates with climate oscillations. The LGM deep ocean temperature derived from the Mg/Ca record is -1.1 ± 0.3 °C. Transformation to temperature allows estimates to be made of changes in bottom water temperature and seawater d18O and comparison made with literature records. Analysis reveals a ~2.5-kyr lead in the record of temperature over calcite d18O and a longer lead over seawater d18O. This is a reflection of larger phase offsets at eccentricity periods; phase offsets at tilt and precession are within error zero.
Resumo:
Calcium (Ca) and boron (B) have been reported as the major macro-and micronutrient required for castor bean plant yield. The objective of this study was to determine the Ca: B ratios (in the growth media and plant tissue) for fruit yield and shoot dry weight of the castor bean (Ricinus communis L.), grown in a nutrient solution, and to evaluate Ca and B supply on concentration and total uptake of Ca, potassium (K), magnesium (Mg), and B, as well on the seed oil content. The treatments were arranged in a 3 x 3 factorial fashion, consisting of three rates of Ca (40, 80, and 160 mg L-1) and three of B (0.32, 0.96, and 1.60 mg L-1). Calcium and B rates increased the shoot and root dry weight and fruit yield at a Ca: B ratio in the nutrient solution of 166 and 100, respectively. Symptoms of B deficiency were observed in plants supplied with 0.32 mg B L-1, regardless of the Ca concentration in the nutrient solution. Plants which showed visual symptoms of Ca deficiency cultivated with 40 mg Ca L-1 presented concentration of Ca in plant tissue up to 10 g kg(-1). The concentration and total Ca and B uptake increased with the rates of them. Notwithstanding, the shoot Ca accumulation was improved by B rates. In addition, there were no decreases in K and Mg uptake due to Ca rates. Furthermore, addition of 80 mg L-1 of Ca and 1.60 mg L-1 of B in the growth media increased the seed oil content. The Ca: B ratio in the diagnostic leaf associated with the highest plant dry weight (shoot and root) and fruit yield, was 500 (16 to 20 g kg(-1) of Ca, and for 30 to 40 mg kg(-1) of B).
Resumo:
Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.
Resumo:
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.
Resumo:
This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.
Resumo:
Over the past decade, the ratio of Mg to Ca in foraminiferal tests has emerged as a valuable paleotemperature proxy. However, large uncertainties remain in the relationships between benthic foraminiferal Mg/Ca and temperature. Mg/Ca was measured in benthic foraminifera from 31 high-quality multicore tops collected in the Florida Straits, spanning a temperature range of 5.8° to 18.6°C. New calibrations are presented for Uvigerina peregrina, Planulina ariminensis, Planulina foveolata, and Hoeglundina elegans. The Mg/Ca values and temperature sensitivities vary among species, but all species exhibit a positive correlation that decreases in slope at higher temperatures. The decrease in the sensitivity of Mg/Ca to temperature may potentially be explained by Mg/Ca suppression at high carbonate ion concentrations. It is suggested that a carbonate ion influence on Mg/Ca may be adjusted for by dividing Mg/Ca by Li/Ca. The Mg/Li ratio displays stronger correlations to temperature, with up to 90% of variance explained, than Mg/Ca alone. These new calibrations are tested on several Last Glacial Maximum (LGM) samples from the Florida Straits. LGM temperatures reconstructed from Mg/Ca and Mg/Li are generally more scattered than core top measurements and may be contaminated by high-Mg overgrowths. The potential for Mg/Ca and Mg/Li as temperature proxies warrants further testing.
Resumo:
This study focuses on the vertical distribution of authigenic carbonates (aragonite and high Mg-calcite) in the form of finely disseminated precipitates as well as massive carbonate concretions present in and above gas hydrate bearing sediments of the Northern Congo Fan. Analyses of Ca, Mg, Sr and Ba in pore water, bulk sediments and authigenic carbonates were carried out on gravity cores taken from three pockmark structures (Hydrate Hole, Black Hole and Worm Hole). In addition, a background core was retrieved from an area not influenced by fluid seepage. Pore water Sr/Ca and Mg/Ca ratios are used to reveal the current depths of carbonate formation as well as the mineralogy of the authigenic precipitates. The Sr/Ca and Mg/Ca ratios of bulk sediments and massive carbonate concretions were applied to infer the presence and depth distribution of authigenic aragonite and high Mg-calcite, based on the approach presented by Bayon et al. [Bayon et al. (2007). Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241(1-4), 93-109, doi:10.1016/j.margeo.2007.03.007]. We show that the approach developed by Bayon et al. (2007) for sediments of cold seeps of the Niger Delta is also suitable to identify the mineralogy of authigenic carbonates in pockmark sediments of the Congo Deep-Sea Fan. We expand this approach by combining interstitial with solid phase Sr/Ca and Mg/Ca ratios, which demonstrate that high Mg-calcite is the predominant authigenic carbonate that currently forms at the sulfate/methane reaction zone (SMRZ). This is the first study which investigates both solid phase and pore water signatures typical for either aragonite or high Mg-calcite precipitation for the same sediment cores and thus is able to identify active and fossil carbonate precipitation events. At all investigated pockmark sites fossil horizons of the SMRZ were deduced from high Mg-calcite located above and below the current depths of the SMRZ. Additionally, aragonite enrichments typical for high seepage rates were detected close to the sediment surface at these sites. However, active precipitation of aragonite as indicated by pore water characteristics only occurs at the Black Hole site. Dissolved and solid phase Ba concentrations were used to estimate the time the SMRZ was fixed at the current depths of the diagenetic barite fronts. The combined pore water and solid phase elemental ratios (Mg/Ca, Sr/Ca) and Ba concentrations allow the reconstruction of past changes in methane seepage at the investigated pockmark sites. At the Hydrate Hole and Worm Hole sites the time of high methane seepage was estimated to have ceased at least 600 yr BP. In contrast, a more recent change from a high flux to a more dormant stage must have occurred at the Black Hole site as evidenced by active aragonite precipitation at the sediment surface and a lack of diagenetic Ba enrichments.
Resumo:
Constraining the magnitude of high-latitude temperature change across the Eocene-Oligocene transition (EOT) is essential for quantifying the magnitude of Antarctic ice-sheet expansion and understanding regional climate response to this event. To this end, we constructed high-resolution stable oxygen isotope (d18O) and magnesium/calcium (Mg/Ca) records from planktic and benthic foraminifera at four Ocean Drilling Program (ODP) sites in the Southern Ocean. Planktic foraminiferal Mg/Ca records from the Kerguelen Plateau (ODP Sites 738, 744, and 748) show a consistent pattern of temperature change, indicating 2-3 °C cooling in direct conjunction with the first step of a two-step increase in benthic and planktic foraminiferal d18O values across the EOT. In contrast, benthic Mg/Ca records from Maud Rise (ODP Site 689) and the Kerguelen Plateau (ODP Site 748) do not exhibit significant temperature change. The contrasting temperature histories derived from the planktic and benthic Mg/Ca records are not reconcilable, since vertical d18O gradients remained nearly constant at all sites between 35.0 and 32.5 Ma. Based on the coherency of the planktic Mg/Ca records from the Kerguelen Plateau sites and complications with benthic Mg/Ca paleothermometry at low temperatures, the planktic Mg/Ca records are deemed the most reliable measure of Southern Ocean temperature change. We therefore interpret a uniform cooling of 2-3 °C in both deep surface (thermocline) waters and intermediate deep waters of the Southern Ocean across the EOT. Cooling of Southern Ocean surface waters across the EOT was likely propagated to the deep ocean, since deep waters were primarily sourced on the Antarctic margin throughout this time interval. Removal of the temperature component from the observed foraminiferal d18O shift indicates that seawater d18O values increased by 0.6 ± 0.15 per mil across the EOT interval, corresponding to an increase in global ice volume to a level equivalent with 60-130% modern East Antarctic ice sheet volume.
Resumo:
Here we present evidence that the Holocene African monsoon system (AMS) varied in response to the eastern equatorial Atlantic sea-surface temperature (SST). Several short-term episodes of decreased moisture availability as a result of low eastern equatorial Atlantic SST are suggested by planktonic foraminiferal Mg/Ca ratios. These episodes promoted a weakening of the AMS and thus determined the timing and intensity of arid periods. Local sea-surface salinities also reveal regional patterns of precipitation in equatorial western Africa. The high eastern equatorial Atlantic SSTs occur in concert with seasonally increased insolation at low latitudes, suggesting a strong response of African monsoonal precipitation to oceanic conditions at low latitudes.
Resumo:
We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.
Resumo:
Recrystallization processes in marine sediments can alter the extent to which biogenic calcite composition serves as a proxy of oceanic chemical and isotopic history. Models of calcite recrystallization developed to date have resulted in significant insights into these processes, but are not completely adequate to describe the conditions of recrystallization. Marine sediments frequently have concentration gradients in interstitial dissolved calcium, magnesium, and strontium which have probably evolved during sediment accumulation. Realistic, albeit simplified, models of the temporal evolution of interstitial water profiles of Ca, Mg, and Sr were used with several patterns of recrystallization rate variation to predict the composition of recrystallized inorganic calcite. Comparison of predictions with measured Mg/Ca and Sr/Ca ratios in severely altered calcite samples from several Deep Sea Drilling Project sites demonstrates that models incorporating temporal variation in interstitial water composition more successfully predict observed calcite compositions than do models which rely solely on present-day interstitial water chemistry. Temporal changes in interstitial composition are particularly important in interpreting Mg/Ca ratios in conjunction with Sr/Ca ratios. Estimates of Mg distribution coefficients from previous observations in marine sediments, much lower than those in laboratory studies of inorganic calcite, are confirmed by these results. Evaluation of the effects of diagenetic alteration of biogenic calcium carbonate sediment must be a site-specific process, taking into account accumulation history, present interstitial chemistry and its variation in the past, and sample depths and ages.
Resumo:
Historical sediment nutrient concentrations and heavy-metal distributions were studied in five embayments in the Gulf of Finland and an adjacent lake. The main objective of the study was to examine the response of these water bodies to temporal changes in human activities. Sediment cores were collected from the sites and dated using 210Pb and 137Cs. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss on ignition (LOI), grain size, Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the geochemical variables and to compare trends between the different sites. The links between the catchment land use and sediment geochemical data were studied using a multivariate technique of redundancy analysis (RDA). Human activities produce marked geochemical variations in coastal sediments. These variations and signals are often challenging to interpret due to various sedimentological and post-depositional factors affecting the sediment profiles. In general, the sites studied here show significant upcore increases in sedimentation rates, TP and TN concentrations. Also Cu, which is considered to be a good indicator of anthropogenic influence, showed clear increases from 1850 towards the top part of the cores. Based on the RDA-analysis, in the least disturbed embayments with high forest cover, the sediments are dominated by lithogenic indicators Fe, K, Al and Mg. In embayments close to urban settlement, the sediments have high Cu concentrations and a high sediment Fe/Mn ratio. This study suggests that sediment accumulation rates vary significantly from site to site and that the overall sedimentation can be linked to the geomorphology and basin bathymetry, which appear to be the major factors governing sedimentation rates; i.e. a high sediment accumulation rate is not characteristic either to urban or to rural sites. The geochemical trends are strongly site specific and depend on the local geochemical background, basin characteristics and anthropogenic metal and nutrient loading. Of the studied geochemical indicators, OP shows the least monotonic trends in all studied sites. When compared to other available data, OP seems to be the most reliable geochemical indicator describing the trophic development of the study sites, whereas Cu and Zn appear to be good indicators for anthropogenic influence. As sedimentation environments, estuarine and marine sites are more complex than lacustrine basins with multiple sources of sediment input and more energetic conditions in the former. The crucial differences between lacustrine and estuarine/coastal sedimentation environments are mostly related to Fe. P sedimentation is largely governed by Fe redox-reactions in estuarine environments. In freshwaters, presence of Fe is clearly linked to the sedimentation of other lithogenic metals, and therefore P sedimentation and preservation has a more direct linkage to organic matter sedimentation.
Resumo:
Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.
Resumo:
海洋是驱动大气环流的主要“引擎”,海表温度(SST)又是揭示海洋环境变化的重要参数。利用有孔虫Mg/Ca比值恢复SST具有较高精密度,是目前恢复SST较成功的方法之一。本论文旨在建立一套有效的有孔虫清洗方法和ICP-OES测试有孔虫Mg/Ca比值的分析方法。 文中分析了53份西菲律宾海区(N18°40.23′,E135°37.11′;水深3225m)表层沉积物中浮游有孔虫Globigerinoides ruber(白色)Mg/Ca比值。结合本研究区的特点,文中使用的清洗方法是有孔虫Mg/Ca比值测试常用的“Mg”清洗方法,主要是由以下步骤构成:①用超纯水和甲醇在超声波水浴中清洗,②显微镜下剔除深色硅酸盐颗粒,③用氧化试剂去除有机质(加入30%H2O2和0.1M NaOH溶液在90℃左右的沸水浴中加热),④酸洗(250μl 0.001N HNO3 超声波水浴中清洗10S)。清洗干净的样品经超纯硝酸溶解成溶液后,利用电感耦合等离子体发射光谱(ICP-OES)对其进行Mg/Ca比值的分析测试。仪器操作条件如下:辅助气流量(Ar)为0.5L/min(0.5L/min-1.5L/min),雾化器压力为0.2Mpa(0-0.4Mpa),泵速为20rpm(0-125rpm),高频输出功率(RF)为1150W(750W-1500W),火焰高度为15.5mm(8-21mm),通过多次重复测量一组Mg/Ca=3.333mmol/mol的标准溶液,其Mg/Ca短期精密度<0.5%,长期精密度为1%。53份样品之间Mg/Ca比值的RSD为2.7%,利用Lea(2000)建立的太平洋地区浮游有孔虫G. ruber(白色)的Mg/Ca与SST的校正公式:Mg/Ca(mmol/mol) =0.30exp[0.089×SST(℃)],得到本研究区的SST为28℃±0.3℃。