973 resultados para CYTOCHROME-B HEAVY
Resumo:
Background: Myotragus balearicus was an endemic bovid from the Balearic Islands (Western Mediterranean) that became extinct around 6,000-4,000 years ago. The Myotragus evolutionary lineage became isolated in the islands most probably at the end of the Messinian crisis, when the desiccation of the Mediterranean ended, in a geological date established at 5.35 Mya. Thus, the sequences of Myotragus could be very valuable for calibrating the mammalian mitochondrial DNA clock and, in particular, the tree of the Caprinae subfamily, to which Myotragus belongs. Results: We have retrieved the complete mitochondrial cytochrome b gene (1,143 base pairs), plus fragments of the mitochondrial 12S gene and the nuclear 28S rDNA multi-copy gene from a well preserved Myotragus subfossil bone. The best resolved phylogenetic trees, obtained with the cytochrome b gene, placed Myotragus in a position basal to the Ovis group. Using the calibration provided by the isolation of Balearic Islands, we calculated that the initial radiation of caprines can be dated at 6.2 ± 0.4 Mya. In addition, alpine and southern chamois, considered until recently the same species, split around 1.6 ± 0.3 Mya, indicating that the two chamois species have been separated much longer than previously thought. Conclusion: Since there are almost no extant endemic mammals in Mediterranean islands, the sequence of the extinct Balearic endemic Myotragus has been crucial for allowing us to use the Messinian crisis calibration point for dating the caprines phylogenetic tree.
Resumo:
Wood mice of the genus Apodemus are widely distributed in Eurasia, with the Eastern Mediterranean being considered as a hotspot. Indeed, numerous species have been documented in Iran, including A. witherbyi, A. hyrcanicus, A. uralensis, A. avicennicus, A. hermonensis, and A. arianus. In this study, 129 specimens were collected from different Iranian localities and two specimens from Afghanistan. The animals were identified taxonomically and their phylogenetic relationships were investigated using cytochrome b mitochondrial DNA sequences. Five species of the genus Apodemus were identified in Iran, including A. hyrcanicus, A. witherbyi, A. cf. ponticus, A. uralensis, and A. mystacinus, beside, A. pallipes from Afghanistan. This study found no evidence of A. flavicollis or A. sylvaticus in Iran, despite their occurrence in Turkey, shedding doubt on the status of A. flavicollis in Iran, Asia Minor, and the Levant. Phylogenetic analyses imply that A. witherbyi has priority over A. avicennicus, A. hermonensis, and A. iconicus. Estimation of the divergence time for these taxa suggests a separation at around 7.2 Ma for the subgenera Karstomys (including A. mystacinus and A. epimelas) and Sylvaemus (including A. flavicollis, A. sylvaticus, A. uralensis, A. pallipes, A. hyrcanicus, A. witherbyi, and A. cf. ponticus). Within the subgenus Karstomys, the divergence times for A. mystacinus and A. epimelas were between 3.0 and 6.1 Ma, and divergence times within the subgenus Sylvaemus were between 5.2 and 6.9 Ma for A. witherbyi and other species in this subgenus. It is postulated that vicariance events including the uplifting of the Zagros Mountains and Anatolian Plateau in the middle Miocene and climate oscillations during the Messinian Salinity Crisis besides formation of the Hyrcanian tertiary forests during the Neogene probably played substantial roles in the radiation and distribution of the genus Apodemus in the Eastern Mediterranean.
Resumo:
Background: Myotragus balearicus was an endemic bovid from the Balearic Islands (Western Mediterranean) that became extinct around 6,000-4,000 years ago. The Myotragus evolutionary lineage became isolated in the islands most probably at the end of the Messinian crisis, when the desiccation of the Mediterranean ended, in a geological date established at 5.35 Mya. Thus, the sequences of Myotragus could be very valuable for calibrating the mammalian mitochondrial DNA clock and, in particular, the tree of the Caprinae subfamily, to which Myotragus belongs. Results: We have retrieved the complete mitochondrial cytochrome b gene (1,143 base pairs), plus fragments of the mitochondrial 12S gene and the nuclear 28S rDNA multi-copy gene from a well preserved Myotragus subfossil bone. The best resolved phylogenetic trees, obtained with the cytochrome b gene, placed Myotragus in a position basal to the Ovis group. Using the calibration provided by the isolation of Balearic Islands, we calculated that the initial radiation of caprines can be dated at 6.2 ± 0.4 Mya. In addition, alpine and southern chamois, considered until recently the same species, split around 1.6 ± 0.3 Mya, indicating that the two chamois species have been separated much longer than previously thought. Conclusion: Since there are almost no extant endemic mammals in Mediterranean islands, the sequence of the extinct Balearic endemic Myotragus has been crucial for allowing us to use the Messinian crisis calibration point for dating the caprines phylogenetic tree.
Resumo:
The aim was to determine the fate of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. Male broiler chicks (n = 24) were allocated at 1 day old to each of four treatment diets designated T1-T4. T1 and T2 contained the near isogenic nongenetically modified (GM) maize grain, whereas T3 and T4 contained GM maize grain [cry1a(b) gene]; T1 and T3 also contained the near isogenic non-GM soybean meal, whereas T2 and T4 contained GM soybean meal (cp4epsps gene). Four days prior to slaughter at 39-42 days old, 50% of the broilers on T2-T4 had the source(s) of GM ingredients replaced by their non-GM counterparts. Detection of specific DNA sequences in feed, tissue, and digesta samples was completed by polymerase chain reaction analysis. Seven primer pairs were used to amplify fragments (similar to 200 bp) from single copy genes (maize high mobility protein, soya lectin, and transgenes in the GM feeds) and multicopy genes (poultry mitochondrial cytochrome b, maize, and soya rubisco). There was no effect of treatment on the measured growth performance parameters. Except for a single detection of lectin (nontransgenic single copy gene; unsubstantiated) in the extracted DNA from one bursa tissue sample, there was no positive detection of any endogenous or transgenic single copy genes in either blood or tissue DNA samples. However, the multicopy rubisco gene was detected in a proportion of samples from all tissue types (23% of total across all tissues studied) and in low numbers in blood. Feed-derived DNA was found to survive complete degradation up to the large intestine. Transgenic DNA was detected in gizzard digesta but not in intestinal digesta 96 h after the last feeding of treatment diets containing a source of GM maize and/or soybean meal.
Resumo:
The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.
Resumo:
The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.
Resumo:
From 1997 onward, the strobilurin fungicide azoxystrobin was widely used in the main banana-production zone in Costa Rica against Mycosphaerella fijiensis var. difformis causing black Sigatoka of banana. By 2000, isolates of M. fijiensis with resistance to the quinolene oxidase inhibitor fungicides were common on some farms in the area. The cause was a single point mutation from glycine to alanine in the fungal target protein, cytochrome b gene. An amplification refractory mutation system Scorpion quantitative polymerase chain reaction assay was developed and used to determine the frequency of G 143A allele in samples of M. fijiensis. Two hierarchical surveys of spatial variability, in 2001 and 2002,found no significant variation in frequency on spatial scales <10 in. This allowed the frequency of G143A alleles on a farm to be estimated efficiently by averaging single samples taken at two fixed locations. The frequency of G 143A allele in bulk samples from I I farms throughout Costa Rica was determined at 2-month intervals. There was no direct relationship between the number of spray applications and the frequency of G143A on individual farms. Instead, the frequency converged toward regional averages, presumably due to the large-scale mixing of ascospores dispersed by wind. Using trap plants in an area remote from the main producing area, immigration of resistant ascospores was detected as far as 6 km away both with and against the prevailing wind.
Resumo:
We have developed a novel Hill-climbing genetic algorithm (GA) for simulation of protein folding. The program (written in C) builds a set of Cartesian points to represent an unfolded polypeptide's backbone. The dihedral angles determining the chain's configuration are stored in an array of chromosome structures that is copied and then mutated. The fitness of the mutated chain's configuration is determined by its radius of gyration. A four-helix bundle was used to optimise simulation conditions, and the program was compared with other, larger, genetic algorithms on a variety of structures. The program ran 50% faster than other GA programs. Overall, tests on 100 non-redundant structures gave comparable results to other genetic algorithms, with the Hill-climbing program running from between 20 and 50% faster. Examples including crambin, cytochrome c, cytochrome B and hemerythrin gave good secondary structure fits with overall alpha carbon atom rms deviations of between 5 and 5.6 Angstrom with an optimised hydrophobic term in the fitness function. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur ( ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron- transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron- rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron- containing proteins is repressed under iron- restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of Fe-55-labeled E. coli proteins revealed a marked decrease in iron- protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron- sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.
Resumo:
Mitochondria and Wolbachia are maternally inherited genomes that exhibit strong linkage disequilibrium in many organisms. We surveyed Wolbachia infections in 187 specimens of the fig wasp species, Ceratosolen solmsi, and found an infection prevalence of 89.3%. DNA sequencing of 20 individuals each from Wolbachia-infected and -uninfected subpopulations revealed extreme mtDNA divergence (up to 9.2% and 15.3% in CO1 and cytochrome b, respectively) between infected and uninfected wasps. Further, mtDNA diversity was significantly reduced within the infected group. Our sequencing of a large part of the mitochondrial genome from both Wolbachia-infected and -uninfected individuals revealed that high sequence divergence is common throughout the mitochondrial genome. These patterns suggest a partial selective sweep of mitochondria subsequent to the introduction of Wolbachia into C. solsmi, by hybrid introgression from a related species.
Resumo:
Quaternary climatic fluctuations have had profound effects on the phylogeographic structure of many species. Classically, species were thought to have become isolated in peninsular refugia, but there is limited evidence that large, non-polar species survived outside traditional refugial areas. We examined the phylogeographic structure of the red fox (Vulpes vulpes), a species that shows high ecological adaptability in the western Palaearctic region. We compared mitochondrial DNA sequences (cytochrome b and control region) from 399 modern and 31 ancient individuals from across Europe. Our objective was to test whether red foxes colonised the British Isles from mainland Europe in the late Pleistocene, or whether there is evidence that they persisted in the region through the Last Glacial Maximum. We found red foxes to show a high degree of phylogeographic structuring across Europe and, consistent with palaeontological and ancient DNA evidence, confirmed via phylogenetic indicators that red foxes were persistent in areas outside peninsular refugia during the last ice age. Bayesian analyses and tests of neutrality indicated population expansion. We conclude that there is evidence that red foxes from the British Isles derived from central European populations that became isolated after the closure of the landbridge with Europe.
Resumo:
Phylogenetic relationships and divergence times for 10 populations of the three recognized ""species"" of Brazilian lizards of genus Eurolophosaurus were estimated from 1229 bp of cyt b, COI, 12S, and 16S rRNA mitochondrial gene segments. Eurolophosaurus is monophyletic and the basal split within the genus separates E divaricatus from a clade comprising E amathites and E nanuzae. Three populations of E divaricatus, which occurs along the western bank of Rio S (a) over tildeo Francisco, were consistently grouped together. Oil the east bank of the river, E amathites and E nanuzae from state of Bahia were recovered as the sister group of E nanuzae populations from state of Minas Gerais. The paraphyly of E nanuzae and the high divergence levels among populations of E divaricatus strongly suggest that species limits in Eurolophosaurus should be revised. Even considering an extreme evolutionary rate of 2.8% sequence divergence per million years for the four gene segments analyzed together, E. divaricatus would have separated from the two other species by at least 5.5 my ago, and E. amathites from E nanuzae populations from Bahia and Minas Gerais, respectively, by 1.5 and 3.5 my. The paleolacustrine hypothesis and changes in the course of the river potentially explain faunal divergence in the area, but divergences are much older than previously admitted. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We have used coalescent analysis of mtDNA cytochrome b (cyt b) sequences to estimate times of divergence of three species of Alouatta-A. caraya, A. belzebul, and A. guariba-which are in close geographic proximity. A. caraya is inferred to have diverged from the A. guariba/A. belzebul clade approximately 3.83 million years ago (MYA), with the later pair diverging approximately 1.55 MYA. These dates are much more recent than previous dates based on molecular-clock methods. In addition, analyses of new sequences from the Atlantic Coastal Forest species A. guariba indicate the presence of two distinct haplogroups corresponding to northern and southern populations with both haplogroups occurring in sympatry within Sao Paulo state. The time of divergence of these two haplogroups is estimated to be 1.2 MYA and so follows quite closely after the divergence of A. guariba and A. belzebul. These more recent dates point to the importance of Pleistocene environmental events as important factors in the diversification of A. belzebul and A. guariba. We discuss the diversification of the three Alouatta species in the context of recent models of climatic change and with regard to recent molecular phylogeographic analyses of other animal groups distributed in Brazil.
Resumo:
The morphology and phylogenetic relationships of a new genus and two new species of Neotropical freshwater stingrays, family Potamotrygonidae, are investigated and described in detail. The new genus, Heliotrygon, n. gen., and its two new species, Heliotrygon gomesi, n. sp. (type-species) and Heliotrygon rosai, n. sp., are compared to all genera and species of potamotrygonids, based on revisions in progress. Some of the derived features of Heliotrygon include its unique disc proportions (disc highly circular, convex anteriorly at snout region, its width and length very similar), extreme subdivision of suborbital canal (forming a complex honeycomb-like pattern anterolaterally on disc), stout and triangular pelvic girdle, extremely reduced caudal sting, basibranchial copula with very slender and acute anterior extension, and precerebral and frontoparietal fontanellae of about equal width, tapering very little posteriorly. Both new species can be distinguished by their unique color patterns: Heliotrygon gomesi is uniform gray to light tan or brownish dorsally, without distinct patterns, whereas Heliotrygon rosai is characterized by numerous white to creamy-white vermiculate markings over a light brown, tan or gray background color. Additional proportional characters that may further distinguish both species are also discussed. Morphological descriptions are provided for dermal denticles, ventral lateral-line canals, skeleton, and cranial, hyoid and mandibular muscles of Heliotrygon, which clearly corroborate it as the sister group of Paratrygon. Both genera share numerous derived features of the ventral lateral-line canals, neurocranium, scapulocoracoid, pectoral basals, clasper morphology, and specific patterns of the adductor mandibulae and spiracularis medialis muscles. Potamotrygon and Plesiotrygon are demonstrated to share derived characters of their ventral lateral-line canals, in addition to the presence of angular cartilages. Our morphological phylogeny is further corroborated by a molecular phylogenetic analysis of cytochrome b based on four sequences (637 base pairs in length), representing two distinct haplotypes for Heliotrygon gomesi. Parsimony analysis produced a single most parsimonious tree revealing Heliotrygon and Paratrygon as sister taxa (boot-strap proportion of 70%), which together are the sister group to a clade including Plesiotrygon and species of Potamotrygon. These unusual stingrays highlight that potamotrygonid diversity, both in terms of species composition and undetected morphological and molecular patterns, is still poorly known.
Resumo:
The small-sized frugivorous bat Carollia perspicillata is an understory specialist and occurs in a wide range of lowland habitats, tending to be more common in tropical dry or moist forests of South and Central America. Its sister species, Carollia brevicauda, occurs almost exclusively in the Amazon rainforest. A recent phylogeographic study proposed a hypothesis of origin and subsequent diversification for C. perspicillata along the Atlantic coastal forest of Brazil. Additionally, it also found two allopatric clades for C. brevicauda separated by the Amazon Basin. We used cytochrome b gene sequences and a more extensive sampling to test hypotheses related to the origin and diversification of C. perspicillata plus C. brevicauda clade in South America. The results obtained indicate that there are two sympatric evolutionary lineages within each species. In C. perspicillata, one lineage is limited to the Southern Atlantic Forest, whereas the other is widely distributed. Coalescent analysis points to a simultaneous origin for C. perspicillata and C. brevicauda, although no place for the diversification of each species can be firmly suggested. The phylogeographic pattern shown by C. perspicillata is also congruent with the Pleistocene refugia hypothesis as a likely vicariant phenomenon shaping the present distribution of its intraspecific lineages. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 527-539.