107 resultados para CYSTEINYL-LEUKOTRIENES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytochrome P450 4F subfamily comprises a group of enzymes that metabolize derivatives of arachidonic acid such as prostaglandins, lipoxins leukotrienes and hydroxyeicosatetraenoic acids, which are important mediators involved in the inflammatory response. Therefore, we speculate that CYP4Fs might be able to modulate the extent of the inflammation by controlling of the tissue levels of these inflammatory mediators, especially, leukotriene B4. One way to provide support for this hypothesis is to test whether the expression of CYP4Fs changes under inflammatory conditions, since these changes are required to adjust the levels of inflammatory mediators. ^ A lipopolysacchride (LPS) induced rat inflammation model was used to analyze the expressions of rat CYP4F4 and CYP4F5 in liver and kidney. LPS administration did not change the constitutive expression level of CYP4F4 and CYP4F5. In liver, the expressions of CYP4F4 and CYP4F5 decreased to 50–60% of the untreated level. The same effect of LPS on CYP4F4 and CYP4F5 expression can be mimicked in hepatocyte primary cultures treated with LPS, indicating a direct of effect of LPS on hepatocytes. LPS treatment also decreased the activity of liver microsomes towards chlorpromazine, however, antibody inhibition study revealed that liver CYP4Fs are not the only players in metabolizing chlorpromazine. To study further the underlying mechanism, CYP4F5 gene was isolated, characterized, and the promoter region was defined. ^ Accumulating evidence showed that peroxisome proliferator-activated receptors (PPARs) play an active role in inflammation. To investigate the possible role of PPARα in regulating CYP4F expression by inflammation or by clofibrate treatment, the expressions of two new mouse 4F isoforms were analyzed in PPARα knockout mice upon LPS or clofibrate challenge. A novel induction of CYP4F15 by LPS and clofibrate was observed in kidney, and this effect is totally dependent on the presence of PPARα. Renal CYP4F16 expression was not affected by LPS or clofibrate in both (+/+) and (−/−) mice. In contrast, hepatic expressions of CYP4F15 and CYP4F16 were reduced significantly in (+/+) mice, but much less in (−/−) mice, suggesting that PPARα is partially responsible for this down-regulation. Clofibrate treatment reduced the expression of CYP4F16 in liver, but has no effect on CYP4F15 and PPARα does not have a role in hepatic CYP4F expression regulated by clofibrate. In general, CYP4Fs are regulated in an isoform-, tissue- and species-specific manner. ^ A human CYP4F isoform, CYP4F11, was isolated. The genomic structure was also solved by using database mining and bioinformatics tools. Localization of CYP4F11 to chromosome 19, 16 kb upstream of CYP4F2, suggests that human CYP4F genes may form a cluster on chromosome 19. This novel human 4F is highly expressed in liver, as well as in kidney, heart and skeletal muscle. Further study of the activity and gene regulation on CYP4F11 will provide us more insights into the physiological functions of CYP4F subfamily. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CYP4F enzymes metabolize endogenous molecules including arachidonic acid, leukotrienes and prostaglandins. The involvement of these eisosanoids in inflammation has led to the hypothesis that CYP4Fs may modulate inflammatory conditions after traumatic brain injury (TBI). In rat, TBI elicited changes in mRNA expression of CYP4Fs as a function of time in the cerebrum region. These changes in CYP4F mRNA levels inversely correlated with the cerebral leukotriene B4 (LTB4) level following injury at the same time points. TBI also resulted in changes in CYP4F protein expression and localization around the injury site, where CYP4F1 and CYP4F6 immunoreactivity increased in surrounding astrocytes and CYP4F4 immunoreactivity shifted from endothelia of cerebral vessels to astrocytes. The study with rat primary astrocytes indicated that pro-inflammatory cytokines TNFα and IL-1β could affect the transcription of CYP4Fs to a certain degree, whereas the changing pattern in the primary astrocytes appeared to be different from that in the in vivo TBI model.^ In addition, the regulation of CYP4F genes has been an unsolved issue although factors including cytokines and fatty acids appear to affect CYP4Fs expression in multiple models. In this project, HaCaT cells were used as an in vitro cellular model to define signaling pathways involved in the regulation of human CYP4F genes. Retinoic acids inhibited CYP4F11 expression, whereas cytokines TNFα and IL-1β induced transcription of CYP4F11 in HaCaT cells. The induction of CYP4F11 by both cytokines could be blocked by a JNK specific inhibitor, indicating the involvement of the JNK pathway in the up-regulation of CYP4F11. Retinoic acids are known to function in gene regulation through nuclear receptors RARs and RXRs. The RXR agonist LG268 greatly induced transcription of CYP4F11, whereas RAR agonist TTNPB obviously inhibited CYP4F11 transcription, indicating that the down-regulation of CYP4F11 by retinoic acid was mediated by RARs, and that inhibition of CYP4F11 by retinoic acid may also be related to the competition for RXR receptors. Thus, the CYP4F11 gene is regulated by signaling pathways including the RXR pathway and the JNK pathway. In contrast, the regulation mechanism of other CYP4Fs by retinoic acids appears to be different from that of CYP4F11.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La urticaria es una enfermedad frecuente que involucra a los mastocitos cutáneos como principal efector. Su activación puede resultar de interacciones ligando-receptor o por activación directa de señales intracelulares. Las consecuencias de la activación son la degranulación, la síntesis de leucotrienos y prostaglandinas y por último la producción de citoquinas y quimioquinas. El cuadro clínico final varía dependiendo de varios parámetros, incluyendo la naturaleza de los estímulos y la activación de los mastocitos de los pacientes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-lipoxygenase (5-LO) catalyzes the initial steps in the formation of leukotrienes, a group of inflammatory mediators derived from arachidonic acid (AA). Here we describe that activation of p38 mitogen-activated protein kinase in human polymorphonuclear leukocytes and in Mono Mac 6 cells leads to activation of downstream kinases, which can subsequently phosphorylate 5-LO in vitro. Different agents activated the 5-LO kinase activities, including stimuli for cellular leukotriene biosynthesis (A23187, thapsigargin, N-formyl-leucyl-phenylalanine), compounds that up-regulate the capacity for leukotriene biosynthesis (phorbol 12-myristate 13-acetate, tumor necrosis factor α, granulocyte/macrophage colony-stimulating factor), and well known p38 stimuli as sodium arsenite and sorbitol. For all stimuli, 5-LO kinase activation was counteracted by SB203580 (3 μM or less), an inhibitor of p38 kinase. At least two p38-dependent 5-LO kinase activities were found. Based on migration properties in in-gel kinase assays and immunoreactivity, one of these was identified as mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP kinase 2). The other appeared to be MAPKAP kinase 3; however, it could not be excluded that also other p38-dependent kinases contributed. When polymorphonuclear leukocytes were incubated with sodium arsenite (strong activator of 5-LO kinases), platelet-activating factor and exogenous AA, there was a 4-fold increase in 5-LO activity as compared with incubations with only platelet-activating factor and AA. This indicates that 5-LO phosphorylation can be one factor determining cellular 5-LO activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl− currents. This current, like other effects of LPA, is consistent with a plasma membrane receptor-mediated activation of G protein-linked signal transduction pathways. Herein we report the identification of a complementary DNA from Xenopus that encodes a functional high-affinity LPA receptor. The predicted structure of this protein of 372 amino acids contains features common to members of the seven transmembrane receptor superfamily with a predicted extracellular amino and intracellular carboxyl terminus. An antisense oligonucleotide derived from the first 5–11 predicted amino acids, selectively inhibited the expression of the endogenous high-affinity LPA receptors in Xenopus oocytes, whereas the same oligonucleotide did not affect the low-affinity LPA receptor. Expression of the full-length cRNA in oocytes led to an increase in maximal Cl− current due to increased expression of the high-affinity LPA receptor, but activation of the low-affinity receptor was, again, unaffected. Oocytes expressing cRNA prepared from this clone showed no response to other lipid mediators including prostaglandins, leukotrienes, sphingosine 1-phosphate, sphingosylphosphorylcholine, and platelet-activating factor, suggesting that the receptor is highly selective for LPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteinyl-tRNA (Cys-tRNA) is essential for protein synthesis. In most organisms the enzyme responsible for the formation of Cys-tRNA is cysteinyl-tRNA synthetase (CysRS). The only known exceptions are the euryarchaea Methanococcus jannaschii and Methanobacterium thermoautotrophicum, which do not encode a CysRS. Deviating from the accepted concept of one aminoacyl-tRNA synthetase per amino acid, these organisms employ prolyl-tRNA synthetase as the enzyme that carries out Cys-tRNA formation. To date this dual-specificity prolyl-cysteinyl-tRNA synthetase (ProCysRS) is only known to exist in archaea. Analysis of the preliminary genomic sequence of the primitive eukaryote Giardia lamblia indicated the presence of an archaeal prolyl-tRNA synthetase (ProRS). Its proS gene was cloned and the gene product overexpressed in Escherichia coli. By using G. lamblia, M. jannaschii, or E. coli tRNA as substrate, this ProRS was able to form Cys-tRNA and Pro-tRNA in vitro. Cys-AMP formation, but not Pro-AMP synthesis, was tRNA-dependent. The in vitro data were confirmed in vivo, as the cloned G. lamblia proS gene was able to complement a temperature-sensitive E. coli cysS strain. Inhibition studies of CysRS activity with proline analogs (thiaproline and 5′-O-[N-(l-prolyl)-sulfamoyl]adenosine) in a Giardia S-100 extract predicted that the organism also contains a canonical CysRS. This prediction was confirmed by cloning and analysis of the corresponding cysS gene. Like a number of archaea, Giardia contains two enzymes, ProCysRS and CysRS, for Cys-tRNA formation. In contrast, the purified Saccharomyces cerevisiae and E. coli ProRS enzymes were unable to form Cys-tRNA under these conditions. Thus, the dual specificity is restricted to the archaeal genre of ProRS. G. lamblia's archaeal-type prolyl- and alanyl-tRNA synthetases refine our understanding of the evolution and interaction of archaeal and eukaryal translation systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits reversible photochemistry in vitro when expressed separately or in tandem. We have determined the crystal structure of the LOV2 domain from the phototropin segment of the chimeric fern photoreceptor phy3 to 2.7-Å resolution. The structure constitutes an FMN-binding fold that reveals how the flavin cofactor is embedded in the protein. The single LOV2 cysteine residue is located 4.2 Å from flavin atom C(4a), consistent with a model in which absorption of blue light induces formation of a covalent cysteinyl-C(4a) adduct. Residues that interact with FMN in the phototropin segment of the chimeric fern photoreceptor (phy3) LOV2 are conserved in LOV domains from phototropin of other plant species and from three proteins involved in the regulation of circadian rhythms in Arabidopsis and Neurospora. This conservation suggests that these domains exhibit the same overall fold and share a common mechanism for flavin binding and light-induced signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid bodies, cytoplasmic inclusions that develop in cells associated with inflammation, are inducible structures that might participate in generating inflammatory eicosanoids. Cis-unsaturated fatty acids (arachidonic and oleic acids) rapidly induced lipid body formation in leukocytes, and this lipid body induction was inhibited by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Several findings indicates that the inhibitory effect of aspirin and NSAIDs on lipid body formation was independent of cyclooxygenase (COX) inhibition. First, the non-COX inhibitor, sodium salicylate, was as potent as aspirin in inhibiting lipid body formation elicited by cis-fatty acids. Second, cis-fatty acid-induced lipid body formation was not impaired in macrophages from COX-1 or COX-2 genetically deficient mice. Finally, NSAIDs inhibited arachidonic acid-induced lipid body formation likewise in macrophages from wild-type and COX-1- and COX-2-deficient mice. An enhanced capacity to generate eicosanoids developed after 1 hr concordantly with cis-fatty acid-induced lipid body formation. Arachidonic and oleic acid-induced lipid body numbers correlated with the enhanced levels of leukotrienes B4 and C4 and prostaglandin E2 produced after submaximal calcium ionophore stimulation. Aspirin and NSAIDs inhibited both induced lipid body formation and the enhanced capacity for forming leukotrienes as well as prostaglandins. Our studies indicate that lipid body formation is an inducible early response in leukocytes that correlates with enhanced eicosanoid synthesis. Aspirin and NSAIDs, independent of COX inhibition, inhibit cis-fatty acid-induced lipid body formation in leukocytes and in concert inhibit the enhanced synthesis of leukotrienes and prostaglandins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pores of voltage-gated ion channels are lined by protein loops that determine selectivity and conductance. The relative orientations of these "P" loops remain uncertain, as do the distances between them. Using site-directed mutagenesis, we introduced pairs of cysteines into the P loops of micro1 rat skeletal muscle sodium channels and sought functional evidence of proximity between the substituted residues. Only cysteinyl residues that are in close proximity can form disulfide bonds or metal-chelating sites. The mutant Y401C (domain I) spontaneously formed a disulfide bond when paired with E758C in the P loop of domain II; the same residue, when coupled with G1530C in domain IV, created a high-affinity binding site for Cd2+ ions. The results provide the first specific constraints for intramolecular dimensions of the sodium channel pore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 micromol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione is the main source of intracellular antioxidant protection in the human erythrocyte and its redox status has frequently been used as a measure of oxidative stress. Extracellular glutathione has been shown to enhance intracellular reduced glutathione levels in some cell types. However, there are conflicting reports in the literature and it remains unclear as to whether erythrocytes can utilise extracellular glutathione to enhance the intracellular free glutathione pool. We have resolved this issue using a C-13-NMR approach. The novel use of L-gamma-glutamyl-L-cysteinyl-[2-C-13] glycine allowed the intra- and extracellular glutathione pools to be distinguished unequivocally, enabling the direct and non-invasive observation over time of the glutathione redox status in both compartments. The intracellular glutathione redox status was measured using H-1 spin-echo NMR, while C-13[H-1-decoupled] NMR experiments were used to measure the extracellular status. Extracellular glutathione was not oxidised in the incubations, and did not affect the intracellular glutathione redox status. Extracellular glutathione also did not affect erythrocyte glucose metabolism, as measured from the lactate-to-pyruvate ratio. The results reported here refute the previously attractive hypothesis that, in glucose-starved erythrocytes, extracellular GSH can increase intracellular GSH concentrations by releasing bound glutathione from mixed disulfides with membrane proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adipose tissue of mice bearing a cachexia-inducing murine tumour (MAC16) shows increased expression of zinc-α2-glycoprotein (ZAG), a lipolytic factor thought to be responsible for the increased lipolysis. The anti-cachectic agent eicosapentaenoic acid (EPA) (0.5 g/kg) attenuated the loss of body weight in mice bearing the MAC16 tumour, and this was accompanied by downregulation of ZAG expression in both white and brown adipose tissue, as determined by Western blotting. Glucocorticoids may be responsible for the increased ZAG expression in adipose tissue. Dexamethasone (1.68 μM) stimulated lipolysis in 3T3-L1 adipocytes, and this effect was attenuated by EPA (50 μM). In addition the lipolytic action of dexamethasone was attenuated by anti-ZAG antibody, suggesting that the induction of lipolysis was mediated through an increase in ZAG expression. This was confirmed by Western blotting, which showed that dexamethasone (1.68 μM) induced a two-fold increase in ZAG expression in both cells and media, and that this was attenuated by EPA (50 μM). These results suggest that EPA may preserve adipose tissue in cachectic mice by downregulation of ZAG expression through interference with glucocorticoid signalling. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In addition to the core symptoms, attention deficit hyperactivity disorder (ADHD) is associated with poor emotion regulation. There is some evidence that children and young adults with ADHD have lower omega-3 levels and that supplementation with omega-3 can improve both ADHD and affective symptoms. We therefore investigated differences between ADHD and non-ADHD children in omega-3/6 fatty acid plasma levels and the relationship between those indices and emotion-elicited event-related potentials (ERPs). Methods Children/adolescents with (n=31) and without ADHD (n=32) were compared in their plasma omega-3/6 indices and corresponding ERPs during an emotion processing task. Results Children with ADHD had lower mean omega-3/6 and ERP abnormalities in emotion processing, independent of emotional valence relative to control children. ERP abnormalities were significantly associated with lower omega-3 levels in the ADHD group. Conclusions The findings reveal for the first time that lower omega-3 fatty acids are associated with impaired emotion processing in ADHD children.