910 resultados para CYCLE LIFE
Resumo:
Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.
Resumo:
Electric vehicle (EV) batteries tend to have accelerated degradation due to high peak power and harsh charging/discharging cycles during acceleration and deceleration periods, particularly in urban driving conditions. An oversized energy storage system (ESS) can meet the high power demands; however, it suffers from increased size, volume and cost. In order to reduce the overall ESS size and extend battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) has been considered as an alternative solution. In this work, we investigate the optimized configuration, design, and energy management of a battery-UC HESS. One of the major challenges in a HESS is to design an energy management controller for real-time implementation that can yield good power split performance. We present the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC converter interfacing with the UC and the battery. In particular, a multi-objective optimization problem is formulated to optimize the power split in order to prolong the battery lifetime and to reduce the HESS power losses. This optimization problem is numerically solved for standard drive cycle datasets using Dynamic Programming (DP). Trained using the DP optimal results, an effective real-time implementation of the optimal power split is realized based on Neural Network (NN). This proposed online energy management controller is applied to a midsize EV model with a 360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy management controller effectively splits the load demand with high power efficiency and also effectively reduces the battery peak current. More importantly, a 38V-385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform has been developed. The real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the real-time controller design for the battery-UC HESS. A battery State-of-Health (SoH) estimation model is developed as a performance metric to evaluate the battery cycle life extension effect. It is estimated that the proposed online energy management controller can extend the battery cycle life by over 60%.
Resumo:
The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.
Resumo:
Lithium-ion batteries provide high energy density while being compact and light-weight and are the most pervasive energy storage technology powering portable electronic devices such as smartphones, laptops, and tablet PCs. Considerable efforts have been made to develop new electrode materials with ever higher capacity, while being able to maintain long cycle life. A key challenge in those efforts has been characterizing and understanding these materials during battery operation. While it is generally accepted that the repeated strain/stress cycles play a role in long-term battery degradation, the detailed mechanisms creating these mechanical effects and the damage they create still remain unclear. Therefore, development of techniques which are capable of capturing in real time the microstructural changes and the associated stress during operation are crucial for unravelling lithium-ion battery degradation mechanisms and further improving lithium-ion battery performance. This dissertation presents the development of two microelectromechanical systems sensor platforms for in situ characterization of stress and microstructural changes in thin film lithium-ion battery electrodes, which can be leveraged as a characterization platform for advancing battery performance. First, a Fabry-Perot microelectromechanical systems sensor based in situ characterization platform is developed which allows simultaneous measurement of microstructural changes using Raman spectroscopy in parallel with qualitative stress changes via optical interferometry. Evolutions in the microstructure creating a Raman shift from 145 cm−1 to 154 cm−1 and stress in the various crystal phases in the LixV2O5 system are observed, including both reversible and irreversible phase transitions. Also, a unique way of controlling electrochemically-driven stress and stress gradient in lithium-ion battery electrodes is demonstrated using the Fabry-Perot microelectromechanical systems sensor integrated with an optical measurement setup. By stacking alternately stressed layers, the average stress in the stacked electrode is greatly reduced by 75% compared to an unmodified electrode. After 2,000 discharge-charge cycles, the stacked electrodes retain only 83% of their maximum capacity while unmodified electrodes retain 91%, illuminating the importance of the stress gradient within the electrode. Second, a buckled membrane microelectromechanical systems sensor is developed to enable in situ characterization of quantitative stress and microstructure evolutions in a V2O5 lithium-ion battery cathode by integrating atomic force microscopy and Raman spectroscopy. Using dual-mode measurements in the voltage range of the voltage range of 2.8V – 3.5V, both the induced stress (~ 40 MPa) and Raman intensity changes due to lithium cycling are observed. Upon lithium insertion, tensile stress in the V2O5 increases gradually until the α- to ε-phase and ε- to δ-phase transitions occur. The Raman intensity change at 148 cm−1 shows that the level of disorder increases during lithium insertion and progressively recovers the V2O5 lattice during lithium extraction. Results are in good agreement with the expected mechanical behavior and disorder change in V2O5, highlighting the potential of microelectromechanical systems as enabling tools for advanced scientific investigations. The work presented here will be eventually utilized for optimization of thin film battery electrode performance by achieving fundamental understanding of how stress and microstructural changes are correlated, which will also provide valuable insight into a battery performance degradation mechanism.
Resumo:
Until now health impact assessment and environmental impact assessment are two different issues, often not addressed together. Both issues have to be dealt with for sustainable building. The aim of this paper is to link healthy and sustainable housing in life cycle assessment. Two strategies are studied: clean air as a functional unity and health as a quality indicator. The strategies are illustrated with an example on the basis of Eco-Quantum, which is a Dutch whole-building assessment tool. It turns out that both strategies do not conflict with the LCA methodology. The LCA methodology has to be refined for this purpose.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.