156 resultados para CORONAVIRUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Winter dysentery (WD) is a seasonal infectious disease described worldwide that causes a marked decrease in milk production in dairy cows. In the Northern hemisphere, where the disease is classically recognized, bovine coronavirus (BCoV) has been assigned as a major etiologic agent of the disease. Nonetheless, in the Southern hemisphere, an in-deep etiological survey on WD cases had not been carried out. This study aimed to survey for BCoV by nested-RT-PCR, rotavirus by polyacrylamide gel electrophoresis (PAGE) and ELISA, bacteria by classical bacteriological methods and PCR for virulence factors and parasites by sugar flotation test on fecal samples of 21 cows from a farm during an outbreak of WD in São Paulo state, Southeastern Brazil. BCoV was detected in all 21 samples, while rotavirus was detected in two symptomatic cows. Escherichia coli, Yersinia intermedia, Providencia rustigianii Proteus penneri, Klebsiella terrigena and Enterobacter aglomerans were detected in samples from both asymptomatic and healthy cows in different associations. The study of E. coli virulence factors revealed that the strains isolated were all apathogenic. Cysts of Eimeria sp. and eggs of Strongyloidea were detected at low numbers in four of the symptomatic cows, with one co-infestation. These results suggest BCoV as the main etiologic agent of the cases of WD in Brazil, a conclusion that, with the clinical and epidemiological patterns of the disease studied herein, match those already described elsewhere. These findings give basis to the development of preventive measures and contribute to the understanding of the etiology of WD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of mesenteric lymph nodes and intestines from 79 unthrifty 3- to 5-month-old postweaning pigs, confirmed as naturally affected with postweaning multisystemic wasting syndrome (PMWS), were studied. Pigs originated from 12 farms in southern Brazil and were selected on the basis of clinical signs and/or gross lesions suggestive of enteric disorder. Lymphohistiocytic infiltrates of varying intensity were associated with anti-porcine circovirus type 2 (anti-PCV2) immunostaining (IS) in samples of intestines and mesenteric lymph nodes from all pigs. Although most findings were similar to those described in PCV2-associated enteritis, anti-PCV2 IS in association with depletion of the goblet cell mucin stores (24 pigs), diffuse ileal villous atrophy and fusion (18 pigs), and dilatation of the lymphatic vessels (11 pigs) combined or not with lymphangitis were also observed. PCV2 antigen was immunohistochemically demonstrated in the cytoplasm and nuclei from intralesional epithelial cells, histiocytes, and endothelial-like cells in intestinal tissues. Together these findings imply an association with PCV2. The presence of co-infections by Lawsonia intracellularis, Brachyspira spp., Mycobacterium spp., Salmonella spp., rotavirus, parvovirus, coronavirus and enteric calicivirus with PCV2 in the intestinal lesions was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avaliou-se a presença de oocistos de Cryptosporidium spp. em amostras de fezes de 14 bezerros e de suas mães até a oitava semana pós parição. A maior taxa de excreção de oocistos foi verificada em bezerros com sete dias de idade. Das vacas, 42,8% foram positivas para Cryptosporidium no período pós-parto. Em outra etapa deste estudo, foram acompanhados 57 bezerros positivos para Cryptosporidium, com até 30 dias de idade, provenientes de 32 propriedades leiteiras, e estudouse o grau de eliminação dos oocistos com a possível ocorrência de diarréia. Em todos os animais positivos para Cryptosporidium foi pesquisada a presença de bactérias enteropatogênicas, vírus (Rotavirus e Coronavirus) e protozoários (Eimeria spp.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactic acid bacteria (LAB) are Gram-positive bacteria and are generally regarded as safe (GRAS) organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc) was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE) of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV) epitope-protein fusion (BCV-Nuc). BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since late 2004, the swine industry in the province of Quebec has experienced a significant increase in death rate related to postweaning multisystemic wasting syndrome (PMWS). To explain this phenomenon, 2 hypotheses were formulated: 1) the presence of a 2nd pathogen could be exacerbating the porcine circovirus 2 (PCV-2) infection, or 2) a new and more virulent PCV-2 strain could be infecting swine. In 2005, 13 PMWS cases were submitted to the Quebec provincial diagnostic laboratory and PCV-2 was the only virus that could be found consistently by PCR in all 13 samples. The PCR detection results obtained for other viruses revealed the following: 61.5% were positive for porcine reproductive and respiratory syndrome virus, 30.8% for swine influenza virus, 15.4% for porcine parvovirus, 69.2% for swine torque teno virus (swTTV), 38.5% for swine hepatitis E virus (swHEV) and 84.6% for Mycoplasma hyorhinis; transmissible gastroenteritis virus and porcine respiratory coronavirus (TGEV/PRCV) was not detected. Sequences of the entire genome revealed that these PCV-2 strains belonged to a genotype (named PCV-2b) that has never been reported in Canada. Further sequence analyses on 83 other Canadian PCV-2 positive cases submitted to the provincial diagnostic laboratory during years 2005 and 2006 showed that 79.5% of the viral sequences obtained clustered in the PCV-2b genotype. The appearance of the PCV-2b genotype in Canada may explain the death rate increase related to PMWS, but this relationship has to be confirmed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NMR structure of a central segment of the previously annotated "SARS-unique domain" (SUD-M; "middle of the SARS-unique domain") in the SARS coronavirus (SARS-CoV) non-structural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3-residues 528-648, and there is a flexibly extended N-terminal tail with the residues 513-527 and a C-terminal flexible tail of residues 649-651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527-651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly-A and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows 3D structure homology with several helicases and NTP-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited similar to 4 unpaired cysteines, and chemically reduced S1 displaying up to similar to 6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an immunogen of the coronavirus, the nucleoprotein (N) is a potential antigen for the serological monitoring of infectious bronchitis virus (IBV). In this report, recombinant N protein from the Beaudette strain of IBV was produced and purified from Escherichia coli as well as Sf9 ( insect) cells, and used for the coating of enzyme-linked immunosorbent assay ( ELISA) plates. The N protein produced in Sf9 cells was phosphorylated whereas N protein from E. coli was not. Our data indicated that N protein purified from E. coli was more sensitive to anti-IBV serum than the protein from Sf9 cells. The recombinant N protein did not react with the antisera to other avian pathogens, implying that it was specific in the recognition of IBV antibodies. In addition, the data from the detection of field samples and IBV strains indicated that using the recombinant protein as coating antigen could achieve an equivalent performance to an ELISA kit based on infected material extracts as a source of antigen(s). ELISAs based on recombinant proteins are safe ( no live virus), clean ( only virus antigens are present), specific ( single proteins can be used) and rapid ( to respond to new viral strains and strains that cannot necessarily be easily cultured).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Powered by advances in electron tomography, recent studies have extended our understanding of how viruses construct "replication factories" inside infected cells. Their function, however, remains an area of speculation with important implications for human health. It is clear from these studies that whatever their purpose, organelle structure is dynamic (M. Ulasli, M. H. Verheije, C. A. de Haan, and F. Reggiori, Cell. Microbiol. 12:844-861, 2010) and intricate (K. Knoops, M. Kikkert, S. H. Worm, J. C. Zevenhoven-Dobbe, Y. van der Meer, et al., PLOS Biol. 6:e226, 2008). But by concentrating on medically important viruses, these studies have failed to take advantage of the genetic variation inherent in a family of viruses that is as diverse as the archaea, bacteria, and eukaryotes combined (C. Lauber, J. J. Goeman, M. del Carmen Parquet, P. T. Nga, E. J. Snijder, et al., PLOS Pathog. 9:e1003500, 2013). In this climate, Maier et al. (H. J. Maier, P. C. Hawes, E. M. Cottam, J. Mantell, P. Verkade, et al., mBio 4:e00801-13, 2013) explored the replicative structures formed by an avian coronavirus that appears to have diverged at an early point in coronavirus evolution and shed light on controversial aspects of viral biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus IBV. It was thought that coronavirus virions were composed of three major viral structural proteins, until investigations of other coronaviruses showed that coronavirus virions also include viral non-structural and group specific proteins as well as host cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs and purified by sucrose gradient ultracentrifugation and analysed by mass spectrometry proteomic. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus thirty-five additional virion-associated host proteins. Virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, whilst others were found to be orthologous to proteins identified in SARS-CoV virions, and also virions from a number of other RNA and DNA viruses. Together these results demonstrate that coronaviruses have the capacity to incorporate a substantial variety of host protein, which may have implications for the disease process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The susceptibility of the chicken embryo related (CER) cell line to infectious bronchitis virus (IBV M41) was characterized after five consecutive passages in CER cells. Virus replication was monitored by cytopathic effect observation, electron microscopy, indirect immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR). At 96 h post-infection (p.i.), the cytopathic effect was graded 75% by cell fusion, rounding up of cells and monolayer detachment, and the electron microscopy image characterized by coronavirus morphology. Cytoplasmic fluorescence was readily observed by from 24 h p.i. onwards, and at all times the respective viral RNA from IBV-infected monolayers was demonstrated by RT-PCR. Extra-cellular virus was measured by virus titration performed on chicken kidney cells and embryonated chicken eggs, and respective titres ranged from 4.0 to 6.0 log(10) EID50/ml on embryonated chicken eggs, and from 2.0 to 6.0 log(10) TCID50/ml on both CER cells and chicken kidney cells studied from 24 to 120 h p.i. These results confirmed that the M41 strain replicated well in the CER cell line.