478 resultados para CONJECTURE
Resumo:
The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)greater-or-equal, slantedχ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)less-than-or-equals, slant2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.
Resumo:
A d-dimensional box is a Cartesian product of d closed intervals on the real line. The boxicity of a graph is the minimum dimension d such that it is representable as the intersection graph of d-dimensional boxes. We give a short constructive proof that every graph with maximum degree D has boxicity at most 2D2. We also conjecture that the best upper bound is linear in D.
Resumo:
The Hadwiger number eta(G) of a graph G is the largest integer n for which the complete graph K-n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, eta(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G square H of graphs. As the main result of this paper, we prove that eta(G(1) square G(2)) >= h root 1 (1 - o(1)) for any two graphs G(1) and G(2) with eta(G(1)) = h and eta(G(2)) = l. We show that the above lower bound is asymptotically best possible when h >= l. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let G = G(1) square G(2) square ... square G(k) be the ( unique) prime factorization of G. Then G satisfies Hadwiger's conjecture if k >= 2 log log chi(G) + c', where c' is a constant. This improves the 2 log chi(G) + 3 bound in [2] 2. Let G(1) and G(2) be two graphs such that chi(G1) >= chi(G2) >= clog(1.5)(chi(G(1))), where c is a constant. Then G1 square G2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G(d) (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan [2]. ( They had shown that the Hadiwger's conjecture is true for G(d) if d >= 3).
Resumo:
The cosmological observations of light from type Ia supernovae, the cosmic microwave background and the galaxy distribution seem to indicate that the expansion of the universe has accelerated during the latter half of its age. Within standard cosmology, this is ascribed to dark energy, a uniform fluid with large negative pressure that gives rise to repulsive gravity but also entails serious theoretical problems. Understanding the physical origin of the perceived accelerated expansion has been described as one of the greatest challenges in theoretical physics today. In this thesis, we discuss the possibility that, instead of dark energy, the acceleration would be caused by an effect of the nonlinear structure formation on light, ignored in the standard cosmology. A physical interpretation of the effect goes as follows: due to the clustering of the initially smooth matter with time as filaments of opaque galaxies, the regions where the detectable light travels get emptier and emptier relative to the average. As the developing voids begin to expand the faster the lower their matter density becomes, the expansion can then accelerate along our line of sight without local acceleration, potentially obviating the need for the mysterious dark energy. In addition to offering a natural physical interpretation to the acceleration, we have further shown that an inhomogeneous model is able to match the main cosmological observations without dark energy, resulting in a concordant picture of the universe with 90% dark matter, 10% baryonic matter and 15 billion years as the age of the universe. The model also provides a smart solution to the coincidence problem: if induced by the voids, the onset of the perceived acceleration naturally coincides with the formation of the voids. Additional future tests include quantitative predictions for angular deviations and a theoretical derivation of the model to reduce the required phenomenology. A spin-off of the research is a physical classification of the cosmic inhomogeneities according to how they could induce accelerated expansion along our line of sight. We have identified three physically distinct mechanisms: global acceleration due to spatial variations in the expansion rate, faster local expansion rate due to a large local void and biased light propagation through voids that expand faster than the average. A general conclusion is that the physical properties crucial to account for the perceived acceleration are the growth of the inhomogeneities and the inhomogeneities in the expansion rate. The existence of these properties in the real universe is supported by both observational data and theoretical calculations. However, better data and more sophisticated theoretical models are required to vindicate or disprove the conjecture that the inhomogeneities are responsible for the acceleration.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
IN this Note, a condensed version of Ref. 1, only the results are presented. The available results for buckling of clamped skew plates are few and far from complete.2'3 In the present investigation, results for several new plate configurations and loading conditions as well as more accurate results for configurations reported in previous literature are obtained.In general, for a given a/b, the critical values increase with increasing skew angle. The results also confirm the conjecture of Ref. 4 that in the case of buckling under shear (Nxv)> "two critical values exist, the positive shear (one tending to reduce the skew angle) being numerically greater than the negative shear. However, reliable values for positive shear could not be obtained in Ref. 4 because of convergence difficulties.
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
Microfinance institutions (MFIs) are constrained by double bottom-lines: meeting social obligations (the first bottom-line) and obtaining financial self-sufficiency (the second bottom-line). The proponents of the first bottom-line, however, are increasingly concerned that there is a trade-off between these two bottom-lines—i.e., getting hold of financial self-sufficiency may lead MFIs to drift away from their original social mission of serving the very poor, commonly known as mission drift in microfinance which is still a controversial issue. This study aims at addressing the concerns for mission drift in microfinance in a performance analysis framework. Chapter 1 deals with theoretical background, motivation and objectives of the topic. Then the study explores the validity of three major and related present-day concerns. Chapter 2 explores the impact of profitability on outreach-quality in MFIs, commonly known as mission drift, using a unique panel database that contains 4-9 years’ observations from 253 MFIs in 69 countries. Chapter 3 introduces factor analysis, a multivariate tool, in the process of analysing mission drift in microfinance and the exercise in this chapter demonstrates how the statistical tool of factor analysis can be utilised to examine this conjecture. In order to explore why some microfinance institutions (MFIs) perform better than others, Chapter 4 looks at factors which have an impact on several performance indicators of MFIs—profitability or sustainability, repayment status and cost indicators—based on quality-data on 353 institutions in 77 countries. The study also demonstrates whether such mission drift can be avoided while having self-sustainability. In Chapter 5 we examine the impact of capital and financing structure on the performance of microfinance institutions where estimations with instruments have been performed using a panel dataset of 782 MFIs in 92 countries for the period 2000-2007. Finally, Chapter 6 concludes the study by summarising the results from the previous chapters and suggesting some directions for future studies.
Resumo:
Given an n x n complex matrix A, let mu(A)(x, y) := 1/n vertical bar{1 <= i <= n, Re lambda(i) <= x, Im lambda(i) <= y}vertical bar be the empirical spectral distribution (ESD) of its eigenvalues lambda(i) is an element of C, i = l, ... , n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD mu(1/root n An) of a random matrix A(n) = (a(ij))(1 <= i, j <= n), where the random variables a(ij) - E(a(ij)) are i.i.d. copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely, that the limit distribution in question is independent of the actual choice of x. In particular, in order to compute this distribution, one can assume that x is real or complex Gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of 1/root n A(n) - zI for complex z. As a corollary, we establish the circular law conjecture (both almost surely and in probability), which asserts that mu(1/root n An) converges to the uniform measure on the unit disc when the a(ij) have zero mean.
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.
Resumo:
In (2+1)-dimensional quantum electrodynamics with massless photons and massive matter fields, it is shown that the mass renormalization of the latter is infrared divergent at one loop. This result remains unchanged at two loops. A simple argument based on a similar divergence of the Coulomb potential leads us to conjecture that charged states are not observable in this model. This argument holds in 1+1 dimensions also.
Resumo:
The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
An exact numerical calculation of ensemble-averaged length-scale-dependent conductance for the one-dimensional Anderson model is shown to support an earlier conjecture for a conductance minimum. The numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.