995 resultados para CO2 Addition
Resumo:
International audience
Resumo:
Carbon monoliths with high densities are studied as adsorbents for the storage of H2, CH4, and CO2 at ambient temperature and high pressures. The starting monolith A3 (produced by ATMI Co.) was activated under a CO2 flow at 1073 K, applying different activation times up to 48 h. Micropore volumes and apparent surface areas were deduced from N2 and CO2 adsorption isotherms at 77 K and 273 K, respectively. CO2 and CH4 isotherms were measured up to 3 MPa and H2 up to 20 MPa. The BET surface area of the starting monolith (941 m2/g) could be significantly increased up to 1586 m2/g, and the developed porosity is almost exclusively comprised of micropores <1 nm. Total storage amounts take into account the compressed gas in the void space of the material, in addition to the adsorbed gas. Remarkably, high total storage amounts are reached for CO2 (482 g/L), CH4 (123 g/L), and H2 (18 g/L). These values are much higher than for other sorbents with similar surface areas, due to the high density of the starting monolith and of the activated ones, for which the density decreases only slightly (from 1.0 g/cm3 to 0.8 g /cm3 upon CO2 activation). The findings reveal the suitability of high density activated carbon monoliths for gas storage application. Thus, the amounts of stored gas can be increased by more than a 70 % in the case of H2 at 20 MPa, almost 5.5 times in the case of CH4 at 3 MPa, and more than 7.5 times in the case of CO2 at 3 MPa when adsorbents are used for gas storage under the investigated conditions rather than simple compression. Furthermore, the obtained results have been recently confirmed by a scale-up study in which 2.64 kg of high density monolith adsorbent was filled a tank cylinder of 2.5 L (Carbon, 76, 2014, 123).
Resumo:
Kindergartens in China offer structured full-day programs for children aged 3-6. Although formal schooling does not commence until age 7, the mathematics program in kindergartens is specifically focused on developing young children’s facility with simple addition and subtraction. This study explored young Chinese children’s strategies for solving basic addition facts as well as their intuitive understanding of addition via interview methods. Results indicate a strong impact that teacher-directed teaching methods have on young children’s cognitions in relation to addition.
Resumo:
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.
Resumo:
Several protocols for isolation of mycobacteria from water exist, but there is no established standard method. This study compared methods of processing potable water samples for the isolation of Mycobacterium avium and Mycobacterium intracellulare using spiked sterilized water and tap water decontaminated using 0.005% cetylpyridinium chloride (CPC). Samples were concentrated by centrifugation or filtration and inoculated onto Middlebrook 7H10 and 7H11 plates and Lowenstein-Jensen slants and into mycobacterial growth indicator tubes with or without polymyxin, azlocillin, nalidixic acid, trimethoprim, and amphotericin B. The solid media were incubated at 32°C, at 35°C, and at 35°C with CO2 and read weekly. The results suggest that filtration of water for the isolation of mycobacteria is a more sensitive method for concentration than centrifugation. The addition of sodium thiosulfate may not be necessary and may reduce the yield. Middlebrook M7H10 and 7H11 were equally sensitive culture media. CPC decontamination, while effective for reducing growth of contaminants, also significantly reduces mycobacterial numbers. There was no difference at 3 weeks between the different incubation temperatures.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems.
Resumo:
Greenhouse gas emissions from a well established, unfertilized tropical grass-legume pasture were monitored over two consecutive years using high resolution automatic sampling. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than WFPS alone. Mean annual emissions were significantly higher during 2008 (5.7 ± 1.0 g N2O-N/ha/day) than 2007 (3.9 ± 0.4 and g N2O-N/ha/day) despite receiving nearly 500 mm less rain. Mean CO2 (28.2 ± 1.5 kg CO2 C/ha/day) was not significantly different (P < 0.01) between measurement years, emissions being highly dependent on temperature. A negative correlation between CO2 and WFPS at >70% indicated a threshold for soil conditions favouring denitrification. The use of automatic chambers for high resolution greenhouse gas sampling can greatly reduce emission estimation errors associated with temperature and WFPS changes.
Resumo:
Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.
Resumo:
Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design