908 resultados para CLASSIFICATION AND REGRESSION TREE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Study was designed to investigate impact of tannins on in vitro ruminal fermentation parameters as well as relationships between concentration and in vitro biological activity of tannins present in tree fruits. Dry and mature fruits of known phenolic content harvested from Acacia nilotica, A. erubescens, A. erioloba, A. sieberiana, Piliostigima thonningii and Dichrostachys cinerea tree species were fermented with rumen fluid in vitro with or without polyethylene glycol (PEG). Correlation between in vitro biological activity and phenolic concentration was determined. Polyethylene glycol inclusion increased Cumulative gas production from all fruit substrates. The largest Increase (225%) after 48 h incubation was observed in D. cinerea fruits while the least (12.7%) increase was observed in A. erubescens fruits. Organic matter degradability (48 h) was increased by PEG inclusion for all tree species except A. erubescens and P. thonningii. For D. cinerea fruits, colorimetric assays were poorly correlated to Increases In gas production due to PEG treatment. Ytterbium precipitable phenolics (YbPh) were also poorly correlated with response to PEG for A. erioloba and P. thonningii fruits. However, YbPh were strongly and positively correlated to the increase In Cumulative gas production due to PEG for A. erubescens and A. nilotica. Folin-Ciocalteau assayed phenolics (SPh) were not correlated to response to PEG in P. thonningii and A. sieberiana. It was Concluded that the PEG effect oil in vitro fermentation was closely related to some measures of phenolic concentration but the relationships varied with tree species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A estrutura horizontal e vertical do componente arbóreo foi investigada em um trecho de Floresta Atlântica baixo-montana através de um levantamento fitossociológico em dois blocos amostrais de 0,99 ha cada no Parque Estadual Intervales. Todos os indivíduos com DAP > 5 cm foram registrados. Foram amostrados 3.078 indivíduos distribuídos em 172 espécies. O índice de diversidade de Shannon foi de H' = 3,85 nat.ind.-1. A família Myrtaceae se destacou tanto em número de espécies (38) quanto em número de indivíduos (745) no levantamento. Euterpe edulis Mart. teve o maior valor de importância (33,98%), abrangendo 21,8% do total de indivíduos registrados. O índice de similaridade quantitativo foi maior do que o qualitativo, mostrando pouca variação estrutural entre os blocos amostrais, mas a grande quantidade de espécies pouco abundantes, resultou em pronunciadas diferenças florísticas entre eles. Uma análise de correspondência retificada (DCA) gerou três estratos verticais arbitrários. O estrato A (> 26 m) teve a menor densidade e foi bem representado pelas espécies Sloanea guianensis (Aubl.) Benth. e Virola bicuhyba (Schott. ex A.DC.) Warb. O estrato B (8 m < h < 26 m) mostrou a maior riqueza e diversidade florística, e o estrato C (< 8 m) a maior densidade. Euterpe edulis, Guapira opposita (Vell.) Reitz, Garcinia gardneriana (Planch. & Triana) Zappi e Eugenia mosenii (Kausel) Sobral foram bem representadas nos estratos B e C da floresta. A existência de estratos verticais em florestas tropicais é discutida, recomendando-se o uso da DCA para estudos da estratificação vertical em outras florestas tropicais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.