932 resultados para CD40 LIGAND DEFICIENCY
Resumo:
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. © 2015 Field et al.
Resumo:
Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.
Resumo:
PURPOSE: This study aims to investigate the prevalence and factors predictive of vitamin D deficiency in patients with malignancy in Brisbane, Australia (latitude 27° S). METHODS: This is a prospective cross-sectional study measuring serum levels of 25-hydroxyvitamin D (25-OHD) in 100 subjects with non-haematological cancer at least 18 years of age not taking vitamin D supplements attending a day oncology unit and oncology/palliative care inpatient ward in Brisbane, Australia. RESULTS: Thirty-seven per cent of outpatient and 49 % of inpatient subjects respectively were vitamin D deficient. Functional status was predictive of low vitamin D levels. CONCLUSION: There was a high prevalence of vitamin D deficiency in patients with cancer in Brisbane, Australia.
Resumo:
Introduction Lifestyle interventions might be useful in the management of adverse effects of androgen deprivation therapy (ADT) in men with prostate cancer. Objectives To examine the effects of dietary and exercise interventions on quality of life (QoL), metabolic risk factors and androgen deficiency symptoms in men with prostate cancer undergoing ADT. Methods CINAHL, Cochrane library, Medline and PsychINFO were searched to identify randomised controlled trials published from January, 2004 to October, 2014. Data extraction and methodological quality assessment was independently conducted by two reviewers. Meta-analysis was conducted using RevMan® 5.3.5. Results Of 2183 articles retrieved, 11 studies met the inclusion criteria and had low risk of bias.Nine studies evaluated exercise (resistance and/or aerobic and/or counselling) and three evaluated dietary supplementation. Median sample size =79 (33–121) and median intervention duration was 12 weeks (12–24). Exercise improved QoL measures (SMD 0.26, 95%CI −0.01 to 0.53) but not body composition, metabolic risk or vasomotor symptoms. Qualitative analysis indicated soy (or isoflavone) supplementation did not improve vasomotor symptoms; however, may improve QoL. Conclusions Few studies have evaluated the efficacy of lifestyle interventions in the management of adverse effects of ADT. We found inconclusive results for exercise in improving QoL and negative results for other outcomes. For soy-based products, we found negative results for modifying vasomotor symptoms and inconclusive results for improving QoL. Future work should investigate the best mode of exercise for improving QoL and other interventions such as dietary counselling should be investigated for their potential to modify these outcomes.
Resumo:
The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.
Resumo:
Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.
Resumo:
Antibodies to LH/chorionic gonadotrophin receptor (LH/CG-R; molecular weight 67 000), isolated in a homogenous state (established by SDS-PAGE and ligand blotting) from sheep luteal membrane using human CG (hCG)-Sepharose affinity chromatography, were raised in three adult male rabbits (R-I, R-II and R-III). Each of the rabbits received 20-30 mu g oi the purified receptor in Freund's complete adjuvant at a time. Primary immunization was followed by booster injection at intervals. Production of receptor antibodies was monitored by (1) determining the dilution of the serum (IgG fraction) that could specifically bind 50% of I-125-LH/CG-R added and (2) analysing sera for any chance in testosterone levels. Following primary immunization and the first booster, all three rabbits exhibited a 2.5- to 6.0-fold increase in serum testosterone over basal levels and this effect was spread over a period of time (similar to 40 days) coinciding with the rise and fall of receptor antibodies. The maximal antibody titre (ED(50)) produced at this time ranged from 1:350 to 1:100 to below detectable limits for R-I, R-II and R-III respectively. Subsequent immunizations followed by the second booster resulted in a substantial increase in antibody titre (ED(50) of 1:5000) in R-I, but this was not accompanied by any change in serum testosterone over preimmune levels, suggesting that with the progress of immunization the character of the antibody produced had also changed. Two pools of antisera from R-I collected 10 days following the booster (at day 70 (bleed I) and day 290 (bleed II)) were used in further experiments. IgG isolated from bleed I but not from bleed II antiserum showed a dose-dependent stimulation of testosterone production by mouse Leydig cells in vitro, thus confirming the in vivo hormone-mimicking activity antibodies generated during the early immunization phase. The IgG fractions from both bleeds were, however, capable of inhibiting (1) I-125-hCG binding to crude sheep luteal membrane (EC(50) of 1:70 and 1:350 for bleed I and II antisera respectively) and (2) ovine LH-stimulated testosterone production by mouse Leydig cells in vitro, indicating the presence oi antagonistic antibodies irrespective of the period of time during which the rabbits were immunized. The: fact that bleed I-stimulated testosterone production could be inhibited in a dose-dependent manner by the addition of IgG from bleed II to the mouse Leydig cell in vitro assay system showed that the agonistic activity is intrinsic to the bleed I antibody. The receptor antibody (bleed II) was also capable of blocking LH action in vivo, as rabbits passively (for 24 h with LH/CG-R antiserum) as well as actively (for 130 days) immunized against LH/CG-R failed to respond to a bolus injection of LH (50 mu g). At no time, however, was the serum testosterone reduced below the basal level. This study clearly shows that, unlike with LH antibody, attempts to achieve an LH deficiency effect in vivo by resorting to immunization with hole LH receptor is difficult, as receptor antibodies exhibit both hormone-mimicking (agonistic) as well as hormone-blocking (antagonistic) activities.
Resumo:
A new heterocycle, namely 2-(furyl)-3-(furfuralimino)-1,2-dihydroquinazolin-4(3H)-one (ffdq) was formed by the ondensation of 2-aminobenzoylhydrazide with furfural and characterized by physico-chemical, spectroscopic, and single crystal X-ray diffraction studies. A series of complexes of ffdq have been synthesized and characterized by physico-chemical, spectroscopic, and thermal studies. According to the i.r. and 1H-n.m.r. spectra ffdq behaves as a bidentate ligand coordinating through quinazoline oxygen and azomethine nitrogen. The FAB-mass spectrum of the Cd(II) complex indicates the monomeric nature of this complex. The X-band e.p.r. spectrum of the Cu(II) complex and thermal stabilities of the Co(II) and Ni(II) complexes are discussed.
Resumo:
Complexes of lanthanide perchlorates with the ligand N,N,N,N-tetra-methyl-3,6,9-trioxaundecane diamide (TUD) of the composition Ln(TUD)2-(ClO4)3 (Ln triple bond; length as m-dash La, Nd, Ho, Er, Y) were isolated. Electrical conductivity values indicate that all the perchlorate groups are ionic. IR and nuclear magnetic resonance (1H and 13C) data prove that the ligand coordinates to the metal via the three ether oxygens and the two carbonyl oxygens. A probable coordination number of ten can be assigned for all the complexes.
Resumo:
Mixed ligand complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') where AB/AC denote N-bonded isonitroso- [3-ketoimino ligands, AB'/AC' denote the corresponding Obonded ligands and R = Me, Et, n-Pr are synthesised and characterised. The complexes are neutral with square planar geometry around nickel(II). The bonding isomerism of the isonitroso group is discussed on the basis of i.r. and 1H n.m.r. studies. The crystal structure of the title complex, Ni(n-Pr-IEAI)(IMAI') has been determined from diffractometer data by Patterson and Fourier methods and refined by least squares to R = 0.088 for 2209 observed reflections. Unit cell constants are: a = 11.945(2), b = 22.436(7), c = 13.248(5) ~, [3 = 95.13(2) ~ The space group is P2Jc with Z = 8. Niekel(II) has a square planar coordination of two imine nitrogens, an isonitroso-nitrogen (from n-Pr-IEAI) and another isonitrosooxygen (from IMAI').
Resumo:
The reactions of terminal borylene complexes of the type [CpFe(CO)(2)(BNR2)](+) (R = `Pr, Cy) with heteroallenes have been investigated by quantum-chemical methods, in an attempt to explain the experimentally observed product distributions. Reaction with dicyclohexylcarbodiimide (CyNCNCy) gives a bis-insertion product, in which 1 equiv of carbodiimide is assimilated into each of the Fe=B and B=N double bonds to form a spirocyclic boronium system. In contrast, isocyanates (R'NCO, R' = Ph, 2,6-wXy1, CY; XYl = C6H3Me2) react to give isonitrile complexes of the type [CpFe(CO)(2)(CNR')]+, via a net oxygen abstraction (or formal metathesis) process. Both carbodiimide and socyanate substrates are shown to prefer initial attack at the Fe=B bond rather than the B=N bond of the borylene complex. Further mechanistic studies reveal that the carbodiimide reaction ultimately leads to the bis-insertion compounds [CpFe(CO)(2)C(NCy)(2)B(NCY)(2)CNR2](+), rather than to the isonitrile system [CpFe(CO)(2)(CNCy)](+), on the basis of both thermodynamic (product stability) and kinetic considerations (barrier heights). The mechanism of the initial carbodiimide insertion process is unusual in that it involves coordination of the substrate at the (borylene) ligand followed by migration of the metal fragment, rather than a more conventional process: i.e., coordination of the unsaturated substrate at the metal followed by ligand migration. In the case of isocyanate substrates, metathesis products are competitive with those from the insertion pathway. Direct, single-step metathesis reactivity to give products containing a coordinated isonitrile ligand (i.e. [CpFe(CO)(2)(CNR')](+)) is facile if initial coordination of the isocyanate at boron occurs via the oxygen donor (which is kinetically favored); insertion chemistry is feasible when the isocyanate attacks initially via the nitrogen atom. However, even in the latter case, further reaction of the monoinsertion product so formed with excess isocyanate offers a number of facile (low energetic barrier) routes which also generate ['CpFe(CO)(2)(CNR')](+), rather than the bis-insertion product [CpFe(CO)(2)C(NR')(O)B(NR')(O)CNR2](+) (i.e., the direct analogue of the observed products in the carbodiimide reaction).
Resumo:
We tested the capacity of several published multispectral indices to estimate the nitrogen nutrition of wheat canopies grown under different levels of water supply and plant density and derived a simple canopy reflectance index that is greatly independent of those factors. Planar domain geometry was used to account for mixed signals from the canopy and soil when the ground cover was low. A nitrogen stress index was developed, which adjusts shoot %N for plant biomass and area, thereby accounting for environmental conditions that affect growth, such as crop water status. The canopy chlorophyll content index (CCCi) and the modified spectral ratio planar index (mSRPi) could explain 68 and 69% of the observed variability in the nitrogen nutrition of the crop as early as Zadoks 33, irrespective of water status or ground cover. The CCCi was derived from the combination of 3 wavebands 670, 720 and 790 nm, and the mSRPi from 445, 705 and 750 nm, together with broader bands in the NIR and RED. The potential for their spatial application over large fields/paddocks is discussed.
Resumo:
Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.
Resumo:
Cathepsin D (CTSD) is a lysosomal protease, the deficiency of which is fatal and associated with neurodegeneration. CTSD knock-out mice, which die at the age of four weeks, show intestinal necrosis, loss of lymphoid cells and moderate pathological changes in the brain. An active-site mutation in the CTSD gene underlies a neurodegenerative disease in newborn sheep, characterized by brain atrophy without any changes to visceral tissues. The CTSD deficiences belong to the group of neuronal ceroid-lipofuscinoses (NCLs), severe neurodegenerative lysosomal storage disorders. The aim of this thesis was to examine the molecular and cellular mechanisms behind neurodegeneration in CTSD deficiency. We found the developmental expression pattern of CTSD to resemble that of synaptophysin and the increasing expression of CTSD to coincide with the active period of myelination in the rat brain, suggesting a role for CTSD in early rat brain development. An active-site mutation underlying the congenital ovine NCL not only affected enzymatic activity, but also changed the stability, processing and transport of the mutant protein, possibly contributing to the disease pathogenesis. We also provide CTSD deficiency as a first molecular explanation for human congenital NCL, a lysosomal storage disorder, characterized by neuronal loss and demyelination in the central nervous system. Finally, we show the first evidence for synaptic abnormalities and thalamocortical changes in CTSD-deficient mice at the molecular and ultrastructural levels. Keywords: cathepsin D, congenital, cortex, lysosomal storage disorder, lysosome, mutation, neurodegeneration, neuronal ceroid-lipofuscinosis, overexpression, synapse, thalamus