980 resultados para CD4 Tlymphocytes
Resumo:
Disseminated leishmaniasis (DL) differs from other clinical forms of the disease due to the presence of many non-ulcerated lesions (papules and nodules) in non-contiguous areas of the body. We describe the histopathology of DL non-ulcerated lesions and the presence of CD4-, CD20-, CD68-, CD31- and von Willebrand factor (vW)-positive cells in the inflamed area. We analysed eighteen biopsies from non-ulcerated lesions and quantified the inflamed areas and the expression of CD4, CD20, CD68, CD31 and vW using Image-Pro software (Media Cybernetics). Diffuse lymphoplasmacytic perivascular infiltrates were found in dermal skin. Inflammation was observed in 3-73% of the total biopsy area and showed a significant linear correlation with the number of vW+ vessels. The most common cells were CD68+ macrophages, CD20+ B-cells and CD4+ T-cells. A significant linear correlation between CD4+ and CD20+ cells and the size of the inflamed area was also found. Our findings show chronic inflammation in all DL non-ulcerated lesions predominantly formed by macrophages, plasmacytes and T and B-cells. As the inflamed area expanded, the number of granulomas and extent of the vascular framework increased. Thus, we demonstrate that vessels may have an important role in the clinical evolution of DL lesions.
Resumo:
Memory CD4 T cell responses are functionally and phenotypically heterogeneous. In the present study, memory CD4 T cell responses were analyzed in different models of Ag-specific immune responses differing on Ag exposure and/or persistence. Ag-specific CD4 T cell responses for tetanus toxoid, HSV, EBV, CMV, and HIV-1 were compared. Three distinct patterns of T cell response were observed. A dominant single IL-2 CD4 T cell response was associated with the model in which the Ag can be cleared. Polyfunctional (single IL-2 plus IL-2/IFN-gamma plus single IFN-gamma) CD4 T cell responses were associated with Ag persistence and low Ag levels. A dominant single IFN-gamma CD4 T cell response was associated with the model of Ag persistence and high Ag levels. The results obtained supported the hypothesis that the different patterns observed were substantially influenced by different conditions of Ag exposure and persistence.
Resumo:
There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.
Resumo:
Despite their limited proliferation capacity, regulatory T cells (T(regs)) constitute a population maintained over the entire lifetime of a human organism. The means by which T(regs) sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of T(regs): precursor CD4(+)CD25(+)CD45RO(-) and mature CD4(+)CD25(+)CD45RO(+) cells. The lifelong dynamics of T(regs) are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4(+)CD25(+)FoxP3(+)T(regs) population is maintained over both precursor and mature T(regs) pools together, and (2) the ratio between precursor and mature T(regs) is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature T(regs) is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of T(regs) is essential for the development and the maintenance of the pool; there exist other sources of mature T(regs), such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived T(regs), and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of T(regs). This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.
Resumo:
We have explored in vitro the mechanism by which human immunodeficiency virus, type 1 (HIV-1) induces cell death of primary CD4+ T cells in conditions of productive infection. Although HIV-1 infection primed phytohemagglutinin-activated CD4+ T cells for death induced by anti-CD95 antibody, T cell death was not prevented by a CD95-Fc decoy receptor, nor by decoy receptors of other members of the TNFR family (TNFR1/R2, TRAILR1/R2/OPG, TRAMP) or by various blocking antibodies, suggesting that triggering of death receptors by their cognate ligands is not involved in HIV-induced CD4 T cell death. HIV-1 induced CD4 T cell shrinkage, cell surface exposure of phosphatidylserine, loss of mitochondrial membrane potential (Deltapsim), and mitochondrial release of cytochrome c and apoptosis-inducing factor. A typical apoptotic phenotype (nuclear chromatin condensation and fragmentation) only occurred in around half of the dying cells. Treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a broad spectrum caspase inhibitor, prevented nuclear chromatin condensation and fragmentation in HIV-infected CD4+ T cells and in a cell-free system (in which nuclei were incubated with cytoplasmic extracts from the HIV-infected CD4+ T cells). Nevertheless, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not prevent mitochondrial membrane potential loss and cell death, suggesting that caspases are dispensable for HIV-mediated cell death. Our findings suggest a major role of the mitochondria in the process of CD4 T cell death induced by HIV, in which targeting of Bax to the mitochondria may be involved.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.
Resumo:
RESUME Dans le cadre de l'infection à VIH-1, deux mécanismes généraux, a) une destruction périphérique massive ou b) un défaut dans la production périphérique ou centrale de nouvelles cellules, pourraient être à l'origine de l'épuisement des lymphocytes T CD4. La question soulève une importante controverse. Dans cette étude, la production thymique et la capacité de prolifération de lymphocytes T ont été étudiées conjointement. La production thymique a été évaluée par l'analyse du contenu en cercles d'excision générés lors du réarrangement du récepteur aux cellules T (ou TRECs) des cellules T CD4 et CD8 périphériques, provenant de sujets sains VIH-1 négatifs (n=120) ou infectés par le VIH-1 (n=297), au stade précoce, intermédiaire et tardif de la phase chronique de la maladie. Au stade précoce, nous observons que le contenu en TRECs de la population CD4 est supérieur à celui de la population contrôle. Aucune différence n'est observée lors de la phase intermédiaire, alors que le contenu en TRECs est inférieur lors de la phase tardive, en comparaison avec le groupe contrôle. Pour les lymphocytes T CD8, le contenu en TRECs reste inférieur au groupe contrôle, à tous les stades de la maladie. Ainsi, au stade précoce, la production thymique chercherait à compenser la perte de lymphocytes T CD4 puis, avec l'évolution de la maladie, cette possibilité s'épuiserait. Les profils d'expression des gènes régulateurs du cycle cellulaire pour les cellules T CD4 et CD8 périphériques, obtenus par la méthode des biopuces d'ADNc (microarray), ont permis l'analyse de la capacité de prolifération périphérique des lymphocytes T. Trois populations cellulaires ont été comparées entre elles : lymphocytes provenant de sujets infectés par le VIH-1, lymphocytes provenant de sujets VIH-1-négatifs et lymphocytes activés in vitro provenant de sujets VIH-1-négatifs. Les résultats montrent, pour les cellules T CD8, un état d'activation et un profil d'expression des gènes régulateurs du cycle cellulaire comparables à ceux des cellules activées in vitro. Le profil d'expression génétique des cellules T CD4, par contre, montre une activation sub-optimale, conjointement à une forte expression de p53, ce qui pourrait amener à un bloc en phase G1 du cycle cellulaire ainsi qu'à une forte apoptose. En conclusion, cette perturbation de la progression du cycle cellulaire des lymphocytes T CD4 périphériques pourrait contribuer à l'échec de la restauration du nombre de lymphocytes T CD4 et ceci, malgré une production thymique conservée dans les stades précoces de la maladie, comme démontré par l'analyse du contenu en TRECs.
Resumo:
Background and objectives In humans, circulating CD4(+)CD25(high) T cells contain mainly regulatory T cells (Treg; FoxP3(+)IL-7R alpha(low)), but a small subset is represented by activated effector T cells (Tact; FoxP3(-)IL-7R alpha(high)). The balance between Tact and Treg may be important after transplantation. The aim of this study was first to analyze and correlate CD4(+)CD25(high) Tact and Treg with the clinical status of kidney transplant recipients and second to study prospectively the effect of two immunosuppressive regimens on Tact/Treg during the first year after transplantation.Design, setting, participants, & measurements CD4(+)CD25(high) Tact and Treg were analyzed by flow cytometry, either retrospectively in 90 patients greater than 1 year after kidney transplantation (cross-sectional analysis) or prospectively in 35 patients receiving two immunosuppressive regimens after kidney transplantation (prospective analysis).Results A higher proportion of Tact and a lower proportion of Treg were found in the majority of kidney recipients. In chronic Immoral rejection, a strikingly higher proportion of Tact was present. A subgroup of stable recipients receiving calcineurin inhibitor-free immunosuppression (mycophenolate mofetil, azathioprine, or sirolimus) had Tact values that were similar to healthy individuals. In the prospective analysis, the proportion of Tact significantly increased in both immunosuppression groups during the first year after transplantation.Conclusions These data highlight distinct patterns in the proportion of circulating Tact depending on the clinical status of kidney recipients. Moreover, the prospective analysis demonstrated an increase in the proportion of Tact, regardless of the immunosuppressive regimen. The measurement of Tact, in addition to Treg, may become a useful immune monitoring tool after kidney transplantation. Clin J Am Soc Nephrol 6: 2025-2033, 2011. doi: 10.2215/CJN.09611010
Resumo:
INTRODUCTION: According to reports from observational databases, classic AIDS-defining opportunistic infections (ADOIs) occur in patients with CD4 counts above 500/µL on and off cART. Adjudication of these events is usually not performed. However, ADOIs are often used as endpoints, for example, in analyses on when to start cART. MATERIALS AND METHODS: In the database, Swiss HIV Cohort Study (SHCS) database, we identified 91 cases of ADOIs that occurred from 1996 onwards in patients with the nearest CD4 count >500/µL. Cases of tuberculosis and recurrent bacterial pneumonia were excluded as they also occur in non-immunocompromised patients. Chart review was performed in 82 cases, and in 50 cases we identified CD4 counts within six months before until one month after ADOI and had chart review material to allow an in-depth review. In these 50 cases, we assessed whether (1) the ADOI fulfilled the SHCS diagnostic criteria (www.shcs.ch), and (2) HIV infection with CD4 >500/µL was the main immune-compromising condition to cause the ADOI. Adjudication of cases was done by two experienced clinicians who had to agree on the interpretation. RESULTS: More than 13,000 participants were followed in SHCS in the period of interest. Twenty-four (48%) of the chart-reviewed 50 patients with ADOI and CD4 >500/µL had an HIV RNA <400 copies/mL at the time of ADOI. In the 50 cases, candida oesophagitis was the most frequent ADOI in 30 patients (60%) followed by pneumocystis pneumonia and chronic ulcerative HSV disease (Table 1). Overall chronic HIV infection with a CD4 count >500/µL was the likely explanation for the ADOI in only seven cases (14%). Other reasons (Table 1) were ADOIs occurring during primary HIV infection in 5 (10%) cases, unmasking IRIS in 1 (2%) case, chronic HIV infection with CD4 counts <500/µL near the ADOI in 13 (26%) cases, diagnosis not according to SHCS diagnostic criteria in 7 (14%) cases and most importantly other additional immune-compromising conditions such as immunosuppressive drugs in 14 (34%). CONCLUSIONS: In patients with CD4 counts >500/ µL, chronic HIV infection is the cause of ADOIs in only a minority of cases. Other immuno-compromising conditions are more likely explanations in one-third of the patients, especially in cases of candida oesophagitis. ADOIs in HIV patients with high CD4 counts should be used as endpoints only with much caution in studies based on observational databases.
Resumo:
Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
In the present study, we have investigated the functional profile of CD4 T cells from patients with common variable immunodeficiency (CVID), including production of cytokines and proliferation in response to bacteria and virus-derived antigens. We show that the functional impairment of CD4 T cells, including the reduced capacity to proliferate and to produce IFN-γ and IL-2, was restricted to bacteria-specific and not virus-specific CD4 T cells. High levels of endotoxins were found in the plasma of patients with CVID, suggesting that CD4 T cell dysfunction might be caused by bacterial translocation. Of note, endotoxemia was associated with significantly higher expression of programmed death 1 (PD-1) on CD4 T cells. The blockade of the PD-1-PD-L1/2 axis in vitro restored CD4 T cell proliferation capacity, thus indicating that PD-1 signaling negatively regulates CD4 T cell functions. Finally, we showed that intravenous immunoglobulin G (IVIG) treatment significantly reduced endotoxemia and the percentage of PD-1(+) CD4 T cells, and restored bacteria-specific CD4 T cell cytokine production and proliferation. In conclusion, the present study demonstrates that the CD4 T cell exhaustion and functional impairment observed in CVID patients is associated with bacterial translocation and that IVIG treatment resolves bacterial translocation and restores CD4 T cell functions.
Resumo:
Transforming growth factor beta (TGF-beta) has been shown to be a central immunomodulator used by leishmaniae to escape effective mechanisms of protection in human and murine infections with these parasites. However, all the information is derived from studies of established infection, while little is known about TGF-beta production in response to Leishmania stimulation in healthy subjects. In this study, TGF-beta1 production was demonstrated in peripheral blood mononuclear cells from healthy subjects never exposed to leishmaniae in response to live Leishmania guyanensis, and the TGF-beta1-producing cells were described as a distinct subpopulation of CD4(+) CD25(+) regulatory T cells. The suppressive properties of CD4(+) CD25(+) T cells were demonstrated in vitro by their inhibition of production of interleukin 2 (IL-2) and IL-10 by CD4(+) CD25(-) T cells in the presence of either anti-CD3 or L. guyanensis. Although neutralization of TGF-beta1 did not reverse the suppressive activity of CD4(+) CD25(+) T cells activated by anti-CD3, it reversed the suppressive activity of CD4(+) CD25(+) T cells activated by L. guyanensis. Altogether our data demonstrated that TGF-beta1 is involved in the suppressive activity of L. guyanensis-stimulated CD4(+) CD25(+) T cells from healthy controls.
Resumo:
CD4 expression in HIV replication is paradoxical: HIV entry requires high cell-surface CD4 densities, but replication requires CD4 down-modulation. However, is CD4 density in HIV+ patients affected over time? Do changes in CD4 density correlate with disease progression? Here, we examined the role of CD4 density for HIV disease progression by longitudinally quantifying CD4 densities on CD4+ T cells and monocytes of ART-naive HIV+ patients with different disease progression rates. This was a retrospective study. We defined three groups of HIV+ patients by their rate of CD4+ T cell loss, calculated by the time between infection and reaching a CD4 level of 200 cells/microl: fast (<7.5 years), intermediate (7.5-12 years), and slow progressors (>12 years). Mathematical modeling permitted us to determine the maximum CD4+ T cell count after HIV seroconversion (defined as "postseroconversion CD4 count") and longitudinal profiles of CD4 count and density. CD4 densities were quantified on CD4+ T cells and monocytes from these patients and from healthy individuals by flow cytometry. Fast progressors had significantly lower postseroconversion CD4 counts than other progressors. CD4 density on T cells was lower in HIV+ patients than in healthy individuals and decreased more rapidly in fast than in slow progressors. Antiretroviral therapy (ART) did not normalize CD4 density. Thus, postseroconversion CD4 counts define individual HIV disease progression rates that may help to identify patients who might benefit most from early ART. Early discrimination of slow and fast progressors suggests that critical events during primary infection define long-term outcome. A more rapid CD4 density decrease in fast progressors might contribute to progressive functional impairments of the immune response in advanced HIV infection. The lack of an effect of ART on CD4 density implies a persistent dysfunctional immune response by uncontrolled HIV infection.
Resumo:
Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.