958 resultados para CCCH type zinc finger


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key step in the regulation of networks that control gene expression is the sequence-specific binding of transcription factors to their DNA recognition sites. A more complete understanding of these DNA–protein interactions will permit a more comprehensive and quantitative mapping of the regulatory pathways within cells, as well as a deeper understanding of the potential functions of individual genes regulated by newly identified DNA-binding sites. Here we describe a DNA microarray-based method to characterize sequence-specific DNA recognition by zinc-finger proteins. A phage display library, prepared by randomizing critical amino acid residues in the second of three fingers of the mouse Zif268 domain, provided a rich source of zinc-finger proteins with variant DNA-binding specificities. Microarrays containing all possible 3-bp binding sites for the variable zinc fingers permitted the quantitation of the binding site preferences of the entire library, pools of zinc fingers corresponding to different rounds of selection from this library, as well as individual Zif268 variants that were isolated from the library by using specific DNA sequences. The results demonstrate the feasibility of using DNA microarrays for genome-wide identification of putative transcription factor-binding sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zn(Scys)4 unit is present in numerous proteins, where it assumes structural, regulatory, or catalytic roles. The same coordination is found naturally around iron in rubredoxins, several structures of which have been refined at resolutions of, or near to, 1 A. The fold of the small protein rubredoxin around its metal ion is an excellent model for many zinc finger proteins. Zn-substituted rubredoxin and its Fe-containing counterpart were both obtained as the products of the expression in Escherichia coli of the rubredoxin-encoding gene from Clostridium pasteurianum. The structures of both proteins have been refined with an anisotropic model at atomic resolution (1.1 A, R = 8.3% for Fe-rubredoxin, and 1.2 A, R = 9.6% for Zn-rubredoxin) and are very similar. The most significant differences are increased lengths of the M-S bonds in Zn-rubredoxin (average length, 2.345 A) as compared with Fe-rubredoxin (average length, 2.262 A). An increase of the CA-CB-SG-M dihedral angles involving Cys-6 and Cys-39, the first cysteines of each of the Cys-Xaa-Xaa-Cys metal binding motifs, has been observed. Another consequence of the replacement of iron by zinc is that the region around residues 36-46 undergoes larger displacements than the remainder of the polypeptide chain. Despite these changes, the main features of the FeS4 site, namely a local 2-fold symmetry and the characteristic network of N-H...S hydrogen bonds, are conserved in the ZnS4 site. The Zn-substituted rubredoxin provides the first precise structure of a Zn(Scys)4 unit in a protein. The nearly identical fold of rubredoxin around iron or zinc suggests that at least in some of the sites where the metal has mainly a structural role-e.g., zinc fingers-the choice of the relevant metal may be directed by its cellular availability and mobilization processes rather than by its chemical nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously characterized a methionine aminopeptidase (EC 3.4.11.18; Met-AP1; also called peptidase M) in Saccharomyces cerevisiae, which differs from its prokaryotic homologues in that it (i) contains an N-terminal zinc-finger domain and (ii) does not produce lethality when disrupted, although it does slow growth dramatically; it is encoded by a gene called MAP1. Here we describe a second methionine aminopeptidase (Met-AP2) in S. cerevisiae, encoded by MAP2, which was cloned as a suppressor of the slow-growth phenotype of the map1 null strain. The DNA sequence of MAP2 encodes a protein of 421 amino acids that shows 22% identity with the sequence of yeast Met-AP1. Surprisingly, comparison with sequences in the GenBank data base showed that the product of MAP2 has even greater homology (55% identity) with rat p67, which was characterized as an initiation factor 2-associated protein but not yet shown to have Met-AP activity. Transformants of map1 null cells expressing MAP2 in a high-copy-number plasmid contained 3- to 12-fold increases in Met-AP activity on different peptide substrates. The epitope-tagged suppressor gene product was purified by immunoaffinity chromatography and shown to contain Met-AP activity. To evaluate the physiological significance of Met-AP2, the MAP2 gene was deleted from wild-type and map1 null yeast strains. The map2 null strain, like the map1 null strain, is viable but with a slower growth rate. The map1, map2 double-null strains are nonviable. Thus, removal of N-terminal methionine is an essential function in yeast, as in prokaryotes, but yeast require two methionine aminopeptidases to provide the essential function which can only be partially provided by Met-AP1 or Met-AP2 alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1-/-). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1 -/- cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1-/- lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1-/- compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications. © 2014 Daniela Bastianelli et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12% of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543-5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182-90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h (2) = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10(-6)) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Several studies have identified rare genetic variations responsible for many cases of familial breast cancer but their contribution to total breast cancer incidence is relatively small. More common genetic variations with low penetrance have been postulated to account for a higher proportion of the population risk of breast cancer. Methods and Results In an effort to identify genes that influence non-familial breast cancer risk, we tested over 25,000 single nucleotide polymorphisms (SNPs) located within approximately 14,000 genes in a large-scale case-control study in 254 German women with breast cancer and 268 age-matched women without malignant disease. We identified a marker on chromosome 14q24.3-q31.1 that was marginally associated with breast cancer status (OR = 1.5, P = 0.07). Genotypes for this SNP were also significantly associated with indicators of breast cancer severity, including presence of lymph node metastases ( P = 0.006) and earlier age of onset ( P = 0.01). The association with breast cancer status was replicated in two independent samples (OR = 1.35, P = 0.05). High-density association fine mapping showed that the association spanned about 80 kb of the zinc-finger gene DPF3 (also known as CERD4 ). One SNP in intron 1 was found to be more strongly associated with breast cancer status in all three sample collections (OR = 1.6, P = 0.003) as well as with increased lymph node metastases ( P = 0.01) and tumor size ( P = 0.01). Conclusion Polymorphisms in the 5' region of DPF3 were associated with increased risk of breast cancer development, lymph node metastases, age of onset, and tumor size in women of European ancestry. This large-scale association study suggests that genetic variation in DPF3 contributes to breast cancer susceptibility and severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a protein-mediated dual functional affinity adsorption of plasmid DNA is described in this work. The affinity ligand for the plasmid DNA comprises a fusion protein with glutathione-S-transferase (GST) as the fusion partner with a zinc finger protein. The protein ligand is first bound to the adsorbent by affinity interaction between the GST moeity and gluthathione that is covalently immobilized to the base matrix. The plasmid binding is then enabled via the zinc finger protein and a specific nucleotide sequence inserted into the DNA. At lower loadings, the binding of the DNA onto the Fractogel, Sepharose, and Streamline matrices was 0.0078 ± 0.0013, 0.0095 ± 0.0016, and 0.0080 ± 0.0006 mg, respectively, to 50 μL of adsorbent. At a higher DNA challenge, the corresponding amounts were 0.0179 ± 0.0043, 0.0219 ± 0.0035, and 0.0190 ± 0.0041 mg, respectively. The relatively constant amounts bound to the three adsorbents indicated that the large DNA molecule was unable to utilize the available zinc finger sites that were located in the internal pores and binding was largely a surface adsorption phenomenon. Utilization of the zinc finger binding sites was shown to be highest for the Fractogel adsorbent. The adsorbed material was eluted with reduced glutathione, and the eluted efficiency for the DNA was between 23% and 27%. The protein elution profile appeared to match the adsorption profiles with significantly higher recoveries of bound GST-zinc finger protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods are presented for the preparation, ligand density analysis and use of an affinity adsorbent for the purification of a glutathione S-transferase (GST) fusion protein in packed and expanded bed chromatographic processes. The protein is composed of GST fused to a zinc finger transcription factor (ZnF). Glutathione, the affinity ligand for GST purification, is covalently immobilized to a solid-phase adsorbent (Streamline™). The GST–ZnF fusion protein displays a dissociation constant of 0.6 x10-6 M to glutathione immobilized to Streamline™. Ligand density optimization, fusion protein elution conditions (pH and glutathione concentration) and ligand orientation are briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods are presented for the production, affinity purification and analysis of plasmid DNA (pDNA). Batch fermentation is used for the production of the pDNA, and expanded bed chromatography, via the use of a dual affinity glutathione S-transferase (GST) fusion protein, is used for the capture and purification of the pDNA. The protein is composed of GST, which displays affinity for glutathione immobilized to a solid-phase adsorbent, fused to a zinc finger transcription factor, which displays affinity for a target 9-base pair sequence contained within the target pDNA. A Picogreen™ fluorescence assay and/or anx ethidium bromide agarose gel electrophoresis assay can be used to analyze the eluted pDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have identified around 60 common variants associated with multiple sclerosis (MS), but these loci only explain a fraction of the heritability of MS. Some missing heritability may be caused by rare variants that have been suggested to play an important role in the aetiology of complex diseases such as MS. However current genetic and statistical methods for detecting rare variants are expensive and time consuming. 'Population-based linkage analysis' (PBLA) or so called identity-by-descent (IBD) mapping is a novel way to detect rare variants in extant GWAS datasets. We employed BEAGLE fastIBD to search for rare MS variants utilising IBD mapping in a large GWAS dataset of 3,543 cases and 5,898 controls. We identified a genome-wide significant linkage signal on chromosome 19 (LOD = 4.65; p = 1.9×10-6). Network analysis of cases and controls sharing haplotypes on chromosome 19 further strengthened the association as there are more large networks of cases sharing haplotypes than controls. This linkage region includes a cluster of zinc finger genes of unknown function. Analysis of genome wide transcriptome data suggests that genes in this zinc finger cluster may be involved in very early developmental regulation of the CNS. Our study also indicates that BEAGLE fastIBD allowed identification of rare variants in large unrelated population with moderate computational intensity. Even with the development of whole-genome sequencing, IBD mapping still may be a promising way to narrow down the region of interest for sequencing priority. © 2013 Lin et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition protein 1 (TP1) and TP2 replace histones during midspermiogenesis (stages 12-15) and are finally replaced by protamines. TPs play a predominant role in DNA condensation and chromatin remodeling during mammalian spermiogenesis. TP2 is a zinc metalloprotein with two novel zinc finger modules that condenses DNA in vitro in a GC-preference manner. TP2 also localizes to the nucleolus in transfected HeLa and Cos-7 cells, suggesting a GC-rich preference, even in vivo. We have now studied the localization pattern of TP2 in the rat spermatid nucleus. Colocalization studies using GC-selective DNA-binding dyes chromomycin A3 and 7-amino actinomycin D and an AT-selective dye, 4',6-diamidino-2-phenylindole, indicate that TP2 is preferentially localized to GC-rich sequences. Interestingly, as spermatids mature, TP2 and GC-rich DNA moves toward the nuclear periphery, and in the late stages of spermatid maturation, TP2 is predominantly localized at the nuclear periphery. Another interesting observation is the mutually exclusive localization of GC- and AT-rich DNA in the elongating and elongated spermatids. A combined immunofluorescence experiment with anti-TP2 and anti-TP1 antibodies revealed several foci of overlapping localization, indicating that TP1 and TP2 may have concerted functional roles during chromatin remodeling in mammalian spermiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mxr1p (methanol expression regulator 1) functions as a key regulator of methanol metabolism in the methylotrophic yeast Pichia pastoris. In this study, a recombinant Mxr1p protein containing the N-terminal zinc finger DNA binding domain was overexpressed and purified from E coli cells and its ability to bind to promoter sequences of AOXI encoding alcohol oxidase was examined. In the AOXI promoter, Mxr1p binds at six different regions. Deletions encompassing these regions result in a significant decrease in AOXI promoter activity in vivo. Based on the analysis of AOXI promoter sequences, a consensus sequence for Mxr1p binding consisting of a core 5' CYCC 3' motif was identified. When the core CYCC sequence is mutated to CYCA, CYCT or CYCM (M = 5-methylcytosine), Mxr1p binding is abolished. Though Mxr1p is the homologue of Saccharomyces cerevisiae Adr1p transcription factor, it does not bind to Adr1p binding site of S. cerevisiae alcohol dehydrogenase promoter (ADH2UAS1). However, two point mutations convert ADH2UAS1 into an Mxr1p binding site. The identification of key DNA elements involved in promoter recognition by Mxr1p is an important step in understanding its function as a master regulator of the methanol utilization pathway in P. pastoris.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute anterior uveitis (AAU) involves inflammation of the iris and ciliary body of the eye. It occurs both in isolation and as a complication of ankylosing spondylitis (AS). It is strongly associated with HLA-B*27, but previous studies have suggested that further genetic factors may confer additional risk. We sought to investigate this using the Illumina Exomechip microarray, to compare 1504 cases with AS and AAU, 1805 with AS but no AAU and 21 133 healthy controls. We also used a heterogeneity test to test the differences in effect size between AS with AAU and AS without AAU. In the analysis comparing AS+AAU+ cases versus controls, HLA-B*27 and HLA-A*02:01 were significantly associated with the presence of AAU (P<10−300 and P=6 × 10−8, respectively). Secondary independent association with PSORS1C3 (P=4.7 × 10−5) and TAP2 (P=1.1 × 10−5) were observed in the major histocompatibility complex. There was a new suggestive association with a low-frequency variant at zinc-finger protein 154 in the AS without AAU versus control analysis (zinc-finger protein 154 (ZNF154), P=2.2 × 10−6). Heterogeneity testing showed that rs30187 in ERAP1 has a larger effect on AAU compared with that in AS alone. These findings also suggest that variants in ERAP1 have a differential impact on the risk of AAU when compared with AS, and hence the genetic risk for AAU differs from AS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of genes involved in methanol metabolism of Pichia pastoris is regulated by Mxr1p, a zinc finger transcription factor. In this study, we studied the target gene specificity of Mxr1p by examining its ability to bind to promoters of genes encoding dihydroxyacetone synthase (DHAS) and peroxin 8 (PEX8), since methanol-inducible expression of these genes is abrogated in mxr1-null mutant strains of P. pastoris. Different regions of DHAS and PEX8 promoter were isolated from P. pastoris genomic DNA and their ability to bind to a recombinant Mxr1p protein containing the N-terminal 150 amino acids, including the zinc finger DNA-binding domain, was examined. These studies reveal that Mxr1p specifically binds to promoter regions containing multiple 5'-CYCC-3' sequences, although all DNA sequences containing the 5'-CYCC-3' motif do not qualify as Mxr1p-binding sites. Key DNA-binding determinants are present outside 5'-CYCC-3' motif and Mxr1p preferably binds to DNA sequences containing 5'-CYCCNY-3' than those containing 5'-CYCCNR-3' sequences. This study provides new insights into the molecular determinants of target gene specificity of Mxr1p, and the methodology described here can be used for mapping Mxr1p-binding sites in other methanol-inducible promoters of P. pastoris. Copyright (C) 2010 John Wiley & Sons, Ltd.