998 resultados para CAULLERY POLYCHAETA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This study aimed to characterize, for the first time, the benthic invertebrates that inhabit the region of soft bottoms adjacent to the APARC reefs in order to situate them as an important component of infralittoral coastal areas of Northeast Brazil. Soft bottoms areas of APARC corresponds to infralittoral zones vegetated by seagrass Halodule wrightii and unvegetated infralittoral zones, both subjected to substantial hydrodynamic stress. Through scuba diving, biological and sedimentary samples of both habitats were analyzed, with a cylindrical sampler. We identified 6160 individuals belonging to 16 groups and 224 species. The most abundant macrofaunal group was Polychaeta (43%), followed by Mollusca (25%) and Crustacea (14%), what was expected for these environments. In the first chapter, regarding vegetated areas, we tested three hypotheses: the existence of differences in the faunal structure associated with H. wrightii banks submitted to different hydrodynamic conditions; the occurrence of minor temporal variations on the associated macrofauna of banks protected from hydrodynamic stress; and if the diversity of macrofauna is affected by both benthophagous predators and H. wrightii biomass. It was observed that macrofauna associated at the Exposed bank showed differences in structure when comparing the Protected bank, the granulometry of the sediments, that co-varies with the hydrodynamism, was the cause of these variations. The results also pointed to a lower temporal variation in the macrofaunal structure on the Protected bank and a negative relation between macrofaunal and benthophagous fish abundance. At the Exposed bank, a greater faunal diversity was observed, probably due to the higher seagrass biomass. The second chapter compares the vegetated and non-vegetated areas in order to test the hypothesis that due to greater seasonal stability in tropical environments, seagrass structure would act to distinguish the vegetated and non-vegetated areas macrofauna, over time. It was also expected that depositivores were the most representative invertebrates on non-vegetated environments, on the assumption that the seagrass bank would work as a source of debris to adjacent areas, enriching them. Considering all sampling periods, the total macrofauna abundance and diversity were higher in vegetated areas, when compared to non-vegetated ones. Seasonally, the structural complexity provided by Halodule differentiated more clearly the fauna from vegetated and non-vegetated areas, but only at the climatic extremes, i.e. Dry season (extreme climatic stability, with low hydronamism variation) and Rainy season (great hydrodynamism variation and probably vegetated bank burial). Furthermore, the high organic matter levels measured in the sandy banks coincided with an outstanding trophic importance of deposit feeders, proving the debris-carrying hypothesis. The last chapter focused on the non-vegetated areas, where we tested that the hypothesis infaunal halo in tropical reefs depending on local granulometry. In this context, we also tested the hypothesis that benthophagous fish predation would have an effect on the low abundance of macrofaunal groups due to the high hydrographic stress, thus allowing other predatory groups to have greater importance in these environments. Proving the hypothesis, no spatial variation, both on abundance families neither on community structure, occur along distance of the edge reefs. However, we found that complex combinations of physical factors (grain size and organic matter levels originated from local hydronamic conditions) covary with the distance from the reefs and has stronger influence on macrofauna than considered biological factors, such as predation by benthophagous fishes. Based on the main results, this study shows that unconsolidated areas around APARC reefs are noteworthy from an ecological and conservational point of view, as evidenced by the biota-environment and organismal relations, never before described for these areas
Resumo:
Feeding habits of the skate Rioraja agassizi were analyzed in southeastern Brazil from samples obtained along Silo Paulo coast. A total of 258 specimens were examined, ranging between 96 and 532 mm total length. About 57.85% were females and 42.15% were males, resulting in a 1:1.37 sex-ratio to females. From 223 stomachs collected (94 males and 129 females) empty stomachs represented only 1.4%. Nine prey categories were identified: Polychaeta, Copepoda, Cumacea, Isopoda, Gammaridea, Dendrobranchiata, Brachyura, Teleostei, and one non-animal category (non-identifiable items). Crustaceans were the most important item, indicating that the species has a carcinophagic preference. The presence of fish was just verified in juveniles and some adult individuals, with predominance in summer. Sex, maturity stage and seasonality did not influence the feeding habits of the species.
Resumo:
Eight taxa of marine invertebrates, including two new bivalve species, are described from the Low Head Member of the Polonez Cove Formation (latest early Oligocene) cropping out in the Vaureal Peak area, King George Island, West Antarctica. The fossil assemblage includes representatives of Brachiopoda (genera Neothyris sp. and Liothyrella sp.), Bivalvia (Adamussium auristriatum sp. nov., ?Adamussium cf. A. alanbeui Jonkers, and Limatula (Antarctolima) ferraziana sp. nov.), Bryozoa, Polychaeta (serpulid tubes) and Echinodermata. Specimens occur in debris flows deposits of the Low Head Member, as part of a fan delta setting in a high energy, shallow marine environment. Liothyrella sp., Adamussium auristriatum sp. nov. and Limatula ferraziana sp. nov. are among the oldest records for these genera in King George Island. In spite of their restrict number and diversification, bivalves and brachiopods from this study display an overall dispersal pattern that roughly fits in the clockwise circulation of marine currents around Antarctica accomplished in two steps. The first followed the opening of the Tasmanian Gateway at the Eocene/Oligocene boundary, along the eastern margin of Antarctica, and the second took place in post-Palaeogene time, following the Drake Passage opening between Antarctic Peninsula and South America, along the western margin of Antarctica.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Caracterizou-se a estrutura das comunidades macrobentônicas em diferentes áreas e períodos climáticos da Reserva Biológica do Lago Piratuba (Amapá - Brasil). As amostragens ocorreram nos meses de junho e novembro de 2005 (cinturão lacustre meridional- lagos Comprido de cima, Bacia, Lodão, Grande, Canal Tabaco e Comprido de. baixo e foz do rio Araguari) e 2006 (cinturão lacustre oriental - lagos Piratuba, Jussara, Escara, Trindade, Maresia e Boiado e Rego do Duarte e sete locais da costa (áreas vegetada e não vegetada). Em cada local foram coletadas quatro amostras, com tubo de PVC de 0,0079 m2 , enterrado 20 cm no sedimento. Após coletadas as amostras foram passadas em malha de nylon de 0,3 mm de abertura e os organismos retidos fixados em formalina a 5%. A estrutura das comunidades variou sazonalmente, com marcantes modificações na densidade, composição específica, número de espécies, equitabilidade e diversidade entre ocasiões de amostragem e entre lagos e costa. Foram identificados 54 táxons pertencentes aos filos: Annelida , Arthropoda , Mollusca e Nemertea . No período chuvoso foram registrados 36 táxons e o seco 42. Annelida foi o táxon mais abundante, representando sempre mais que 48% do total de organismos. Os lagos foram dominados por larvas de Insecta , Mollusca e Oligochaeta . Na costa Polychaeta e Crustácea dominaram. Registrou-se nos lagos 32 táxons e densidade média de 667 ind.m -2 . Na costa foram identificados 34 táxons e 1353 ind.m -2 .A área não vegetada da costa foi mais rica, densa e equitativa. O cinturão lacustre meridional e o cinturão lacustre oriental responderam de forma distinta as mudanças sazonais nos seus descritores. Foram identificados três sub-ambientes para a comunidade bentônica: ambiente dulcícola - maioria dos lagos do cinturão meridional, com a fauna predominante de insetos; ambiente de transição entre a região de água doce e a região costeira com fauna mista ( Polychaeta e Insecta ); e, costa, com espécimes de Polychaeta e Crustacea . Os fatores ambientais que melhor se correlacionaram com as variações espaço-temporais na estrutura das comunidades bentônicas foram pH, condutividade elétrica e turbidez da água.
Resumo:
Este trabalho avalia a variabilidade espaço-temporal da meiofauna do médiolitoral na praia de Ajuruteua, Estado do Pará. As coletas foram realizadas a cada dois meses, entre abril de 2003 a fevereiro de 2004 durante as marés de sizígia, em diferentes zonas da praia. As amostras foram retiradas com um amostrador cilíndrico de 3,14 cm2 e fixadas em formalina salina a 5%. Em laboratório, as amostras foram passadas em malha de 0,063 mm de abertura e os organismos retidos identificados em nível de grandes grupos taxonômicos, contados e fixados em álcool etílico a 70%. A meiofauna esteve representada por oito grupos: Turbellaria, Nematoda, Tardigrada, Polychaeta, Oligochaeta, Acari, adultos de Copepoda Harpacticoida e juvenis de Copepoda Harpacticoida. Nematoda foi o grupo dominante, representando 74% do total de indivíduos, seguido de Copepoda (19%). Pôde-se observar clara zonação horizontal da fauna, que se distribuiu em três faixas paralelas à linha de praia, com características significativamente distintas quanto à abundância, riqueza e densidade dos principais grupos taxonômicos. No médiolitoral médio foram observados valores significativamente mais elevados de riqueza e abundância, enquanto os valores mais baixos foram registrados no médiolitoral superior e inferior. A comunidade de meiofauna, ainda que não tenha variado significativamente entre períodos climáticos, foi mais rica e abundante nos meses secos. Os principais fatores responsáveis pelas variações espaço-temporais da meiofauna foram a ação das ondas e das marés e as variações na salinidade da água
Resumo:
To assess the impact and fate of the summer phytoplankton bloom on Antarctic benthos, we evaluated temporal and spatial patterns in macrofaunal abundance and taxonomic composition along a transect crossing the West Antarctic Peninsula (WAP) continental shelf As part of the FOODBANCS project, we sampled three sites at 550-625 m depths during five cruises occurring in November 1999, February-March 2000, June 2000, October 2000 and March 2001. We used a combination of megacore and box-core samplers to take 81 samples, and collected over 30,000 macrofaunal individuals, one of the largest sampling efforts on the Antarctic shelf to date. Comparison of the two sampling methodologies (box core and megacore) indicates similar macrofaunal densities, but with significant differences in taxonomic composition, a reflection of the different spatial scales of sampling. Macrorfaunal abundances on the WAP shelf were relatively high compared to other Antarctic shelf settings. At two of the three sampling sites, macrofaunal abundance remained constant throughout the year, which is consistent with the presence of a sediment `food bank`. Differences were observed in taxonomic composition at the site closest to the coast (Station A), driven by higher abundances of subsurface-deposit feeders. A significant temporal response was observed in the ampharetid polychaetes at Station A, with an abundance peak in the late fall post-bloom period; this may have resulted from juvenile recruitment during the summer bloom. Familial composition of macrofaunal polychaetes on the WAP shelf is more closely related to deep-sea abyssal fauna than to other shelf regions, and we hypothesize that this is a result of both local ecological conditions (low temperatures) and a reflection of historical processes such as extinctions on the Antarctic shelf during previous glacial maxima followed by recolonization from the deep sea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thirty-eight stations were sampled in Guanabara Bay, Rio de Janeiro, Brazil, to assess the spatio-temporal diversity and biomass of sublittoral polychaetes. Samples were collected during the dry (September 2000) and rainy season (May 2001) in shallow sublittoral sediments. The polychaete spatial composition showed a heterogeneous distribution throughout the bay. A negative gradient of diversity and biomass was observed towards the inner parts of the bay and sheltered areas. A wide azoic area was found inside the bay. Some high-biomass and low-diversity spots were found near a sewage-discharge point. In these areas, the polychaete biomass increased after the rainy season. A diversified polychaete community was identified around the bay mouth, with no dramatic changes of this pattern between the two sampling periods. Deposit-feeders were dominant in the entire study area. The relative importance of carnivores and omnivores increased towards the outer sector, at stations with coarse sediment fractions. Guanabara Bay can be divided into three main zones with respect to environmental conditions and polychaete diversity and biomass patterns: A) High polychaete diversity, hydrodynamically exposed areas composed of sandy, oxidized or moderately reduced sediments with normoxic conditions in the water column. B) Low diversity and high biomass of deposit and suspension-feeding polychaete species in the middle part of the bay near continental inflows, comprising stations sharing similar proportions of silt, clay and fine sands. C) Azoic area or an impoverished polychaete community in hydrodynamically low-energy areas of silt and clay with extremely reduced sediments, high total organic matter content and hypoxic conditions in the water column, located essentially from the mid-bay towards the north sector. High total organic matter content and hypoxic conditions combined with slow water renewal in the inner bay seemed to play a key role in the polychaete diversity and biomass. Sedimentation processes and organic load coming from untreated sewage into the bay may have negatively affected the survivorship of the fauna.
Resumo:
The study of biological invasions can be roughly divided into three parts: detection, monitoring, mitigation. Here, our objectives were to describe the marine fauna of the area of the port of São Sebastião (on the northern coast of the state of São Paulo, in the São Sebastião Channel, SSC) to detect introduced species. Descriptions of the faunal community of the SSC with respect to native and allochthonous (invasive or potentially so) diversity are lacking for all invertebrate groups. Sampling was carried out by specialists within each taxonomic group, in December 2009, following the protocol of the Rapid Assessment Survey (RAS) in three areas with artificial structures as substrates. A total of 142 species were identified (61 native, 15 introduced, 62 cryptogenic, 4 not classified), of which 17 were Polychaeta (12, 1, 1, 3), 24 Ascidiacea (3, 6, 15, 0), 36 Bryozoa (17, 0, 18, 1), 27 Cmdana (2, 1, 24, 0), 20 Crustacea (11, 4, 5, 0), 2 Entoprocta (native), 16 Mollusca (13, 3, 0, 0). Twelve species are new occurrences for the SSC. Among the introduced taxa, two are new for coastal Brazil. Estimates of introduced taxa are conservative as the results of molecular studies suggest that some species previously considered cryptogenic are indeed introduced. We emphasize that the large number of cryptogenic species illustrates the need for a long-term monitoring program, especially in areas most susceptible to bioinvasion. We conclude that rapid assessment studies, even in relatively well-known regions, can be very useful for the detection of introduced species and we recommend that they be carried out on a larger scale in all ports with heavy ship traffic.
Resumo:
[EN] Meiofaunal assemblages from intertidal and shallow subtidal seabeds were studied at two sites (one dominated by volcanic sands and the other by organogenic sands) at Tenerife (Canary Islands, NE Atlantic Ocean) throughout an entire year (May 2000?April 2001). Specifically, we aimed (i) to test for differences in diversity, structure, and stability between intertidal and subtidal meiofaunal assemblages, and (ii) to determine if differences in the meiofaunal assemblage structure may be explained by environmental factors (granulometric composition, availability of organic matter, and carbonate content in sediments). A total of 103,763 meiofaunal individuals were collected, including 203 species from 19 taxonomic groups (Acari, Amphipoda, Cnidaria, Copepoda, Echinodermata, Gastrotricha, Isopoda, Insecta, Kinorrhyncha, Misidacea, Nematoda, Nemertini, Oligochaeta, Ostracoda, Polychaeta, Priapulida, Sipuncula, Tanaidacea, and Turbellaria). Nematodes were the most abundant taxonomic group. Species diversity was higher in the subtidal than in the intertidal zone at both sites, as a result of the larger dominance of a few species in the intertidal zone. The meiofaunal assemblage structure was different between tidal levels at both sites, the intertidal presenting greater temporal variability (multivariate dispersion) in the meiofaunal assemblage structure than the subtidal. Sediment grain size, here quantified by the different granulometric fractions, explained the variability in meiofaunal assemblage structure to a greater extent than the percentage of carbonates, a variable linked to sediment origin. This study revealed differences in diversity, assemblage structure, and variability between intertidal and subtidal meiofauna.
Resumo:
The spatio-temporal variations in diversity and abundance of deep-sea macrofaunal assemblages (excluding meiofaunal taxa, as Nematoda, Copepoda and Ostracoda) from the Blanes Canyon (BC) and adjacent open slope are described. The Catalan Sea basin is characterized by the presence of numerous submarine canyons, which are globally acknowledged as biodiversity hot-spots, due to their disturbance regime and incremented conveying of organic matter. This area is subjected to local deep-sea fisheries activities, and to recurrent cold water cascading events from the shelf. The upper canyon (~900 m), middle slope (~1200 m) and lower slope (~1500 m) habitats were investigated during three different months (October 2008, May 2009 and September 2009). A total of 624 specimens belonging to 16 different taxa were found into 67 analyzed samples, which had been collected from the two study areas. Of these, Polychaeta, Mollusca and Crustacea were always the most abundant groups. As expected, the patterns of species diversity and evenness were different in time and space. Both in BC and open slope, taxa diversity and abundance are higher in the shallowest depth and lowest at -1500 m depth. This is probably due to different trophic regimes at these depths. The abundance of filter-feeders is higher inside BC than in the adjacent open slope, which is also related with an increment of predator polychaetes. Surface deposit-feeders are more abundant in the open slope than in BC, along with a decrement of filter-feeders and their predators. Probably these differences are due to higher quantities of suspended organic matter reaching the canyon. The multivariate analyses conducted on major taxa point out major differences effective taxa richness between depths and stations. In September 2009 the analyzed communities double their abundances, with a corresponding increase in richness of taxa. This could be related to a mobilizing event, like the release of accumulated food-supply in a nepheloid layer associated to the arrival of autumn. The highest abundance in BC is detected in the shallowest depth and in late summer (September), probably due to higher food availability caused by stronger flood events coming from Tordera River. The effects of such events seemed to involve adjacent open slope too. The nMDS conducted on major taxa abundance shows a slight temporal difference between the three campaigns samples, with a clear clustering between samples of Sept 09. All depth and all months were dominated by Polychaeta, which have been identified to family level and submitted to further analysis. Family richness have clearly minimum at the -1200 m depth of BC, highlighting the presence of a general impact affecting the populations in the middle slope. Three different matrices have been created, each with a different taxonomic level (All Taxa “AT”, Phylum Level “PL” and Polychaeta Families “PF”). Multivariate analysis (MDS, SIMPER) conducted on PL matrix showed a clear spatial differences between stations (BC and open slope) and depths. MDSs conducted on other two matrices (AT and PF) showed similar patterns, but different from PL analysis. A 2 nd stage analysis have been conducted to understand differences between different taxonomic levels, and PL level has been chosen as the most representative of variation. The faunal differences observed were explained by depth, station and season. All work has been accomplished in the Centre d’estudis avançats de Blanes (CEAB-CSIC), within the framework of Spanish PROMETEO project "Estudio Integrado de Cañones y Taludes PROfundos del MEdiTErráneo Occidental: un hábitat esencial", Ref. CTM2007-66316-C02- 01/MAR.
Resumo:
The thesis describes the molluscan biodiversity of the infralittoral off-shore reefs in the "Secche di Tor Paterno" marine protected area lying in the Central Tyrrhenian Sea off the coasts of Lazio south of Roma. Data originate from underwater sampling activities carried out by SCUBA diving in four biocoenoses: Posidonia oceanica leaves and rhizomes, coralligenous concretions and detritic pools. The representativeness of molluscs as descriptors of biocoenoses is evaluated by preliminary comparisons with data about Polychaeta, Pleocyemata (Crustacea) and Brachiopoda obtained in the same survey. The malacocoenoses of the four biocoenoses are treated in detail. Then data are compared with other data sets to assess differences and similarities with other communities. The agreement between death and living assemblages in the reefs is evaluated for the Posidonia oceanica and the coralligenous biocoenosis and was carried out by a set of standard metrics and some benthic ecology methods. Molluscs perform very well as descriptors of biocoenoses, better than the other phyla. The molluscan assemblages of the reefs are very rich in species despite richness is mainly concentrated in the coralligenous and in the rhizomes of Posidonia oceanica. The leaves of Posidonia oceanica host a rather poor assemblage. Detritic pools host a poor but peculiar species assemblage. The dead-live agreement showed that death assemblages are highly representative of sediments of nearby biocoenoses as a result of low bottom transport. Fidelity metrics suggest a good agreement between the living and death assemblages when species richness and taxonomic composition are considered. The study suggests that fidelity is lower when considering the species dominance. These differences could be associated to the trophism of species and possibly to the species life span.