983 resultados para CAPILLARY GC-MS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the efforts to better manage biosolids field application programs, biosolids managers still lack of efficient and reliable tools to apply large quantities of material while avoiding odor complaints. Objectives of this research were to determine the capabilities of an electronic nose in supporting process monitoring of biosolids production and, to compare odor characteristics of biosolids produced through thermal-hydrolysis anaerobic digestion (TH-AD) to those of alkaline stabilization in the plant, under storage and in the field. A method to quantify key odorants was developed and full scale sampling and laboratory simulations were performed. The portable electronic nose (PEN3) was tested for its capabilities of distinguishing alkali dosages in the biosolids production process. Frequency of recognition of unknown samples was tested achieving highest accuracy of 81.1%. This work exposed the need for a different and more sensitive electronic nose to assure its applicability at full scale for this process. GC-MS results were consistent with those reported in literature and helped to elucidate the behavior of the pattern recognition of the PEN3. Odor characterization of TH-AD and alkaline stabilized biosolids was achieved using olfactometry measurements and GC-MS. Dilution-to-threshold of TH-AD biosolids increased under storage conditions but no correlation was found with the target compounds. The presence of furan and three methylated homologues in TH-AD biosolids was reported for the first time proposing that these compounds are produced during thermal hydrolysis process however, additional research is needed to fully describe the formation of these compounds and the increase in odors. Alkaline stabilized biosolids reported similar odor concentration but did not increase and the ‘fishy’ odor from trimethylamine emissions resulted in more offensive and unpleasant odors when compared to TH-AD. Alkaline stabilized biosolids showed a spike in sulfur and trimethylamine after 3 days of field application when the alkali addition was not sufficient to meet regulatory standards. Concentrations of target compounds from field application of TH-AD biosolids gradually decreased to below the odor threshold after 3 days. This work increased the scientific understanding on odor characteristics and behavior of two types of biosolids and on the application of electronic noses to the environmental engineering field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple method for tracing carbon fixation and lipid synthesis in microalgae was developed using a combination of solid-phase extraction (SPE) and negative ion chemical ionisation gas chromatography mass spectrometry (NCI-GC-MS). NCI-GC-MS is an extremely sensitive technique that can produce an unfragmented molecular ion making this technique particularly useful for stable isotope enrichment studies. Derivatisation of fatty acids using pentafluorobenzyl bromide (PFBBr) allows the coupling of the high separation efficiency of GC and the measurement of unfragmented molecular ions for each of the fatty acids by single quadrupole MS. The key is that isotope spectra can be measured without interference from co-eluting fatty acids or other molecules. Pre-fractionation of lipid extracts by SPE allows the measurement of13C isotope incorporation into the three main lipid classes (phospholipids, glycolipids, neutral lipids) in microalgae thus allowing the study of complex lipid biochemistry using relatively straightforward analytical technology. The high selectivity of GC is necessary as it allows the collection of mass spectra for individual fatty acids, including cis/trans isomers, of the PFB-derivatised fatty acids. The combination of solid-phase extraction and GC-MS enables the accurate determination of13C incorporation into each lipid pool. Three solvent extraction protocols that are commonly used in lipidomics were also evaluated and are described here with regard to extraction efficiencies for lipid analysis in microalgae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have suggested that differences in the natural rooting ability of plant cuttings could be attributed to differences in endogenous auxin levels. Hence, during rooting experiments, it is important to be able to routinely monitor the evolution of endogenous levels of plant hormones. This work reports the development of a new method for the quantification of free auxins in auxin-treated Olea europaea (L.) explants, using dispersive liquid–liquid microextraction (DLLME) and microwave assisted derivatization (MAD) followed by gas chromatography/mass spectrometry (GC/MS) analysis. Linear ranges of 0.5–500 ng mL 1 and 1–500 mg mL 1 were used for the quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), respectively. Determined by serial dilutions, the limits of detection (LOD) and quantification (LOQ) were 0.05 ng mL 1 and 0.25 ng mL 1, respectively for both compounds. When using the calibration curve for determination, the LOQ corresponded to 0.5 ng mL 1 (IAA) and 0.5 mg mL 1 (IBA). The proposed method proved to be substantially faster than other alternatives, and allowed free auxin quantification in real samples of semi-hardwood cuttings and microshoots of two olive cultivars. The concentrations found in the analyzed samples are in the range of 0.131–0.342 mg g 1 (IAA) and 20–264 mg g 1 (IBA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文由三部分共四章组成。第一部分介绍丁香化学成分的研究成果,第二部分为升麻的化学成分研究,第三部分综述了环菠萝蜜烷三萜结构和活性关系的研究现状。 第一部分包括第一和第二章。第一章介绍了丁香(Eugenia caryophyllataThunb.)花蕾的化学成分和结构鉴定。采用正、反相硅胶柱层析等各种分离方法,从其乙醇提取物的乙酸乙酯萃取物和正丁醇萃取物中共分离出34 个化合物,它们的结构类型分属黄酮、三萜、鞣质等。其中1 个为新的酚苷类化合物,其结构经波谱分析鉴定为2-O-(6'-O-没食子酰基)-b-D-葡萄糖基苯甲酸甲酯(24),另外还有12 个化合物为首次从该植物中分离得到。第二章介绍了丁香挥发油的气相色谱- 质谱联用( GC-MS )和正丁醇萃取物的高效液相色谱- 质谱联用(HPLC-MS/MS)分析,尝试简单快速地检测丁香挥发油及极性部分的主要化学成分的方法。 第二部分为第三章。本章介绍了传统中药升麻(Cimicifuga foetida L.)根部乙醇提取物化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化方法和MS、NMR 等波谱解析技术,共分离鉴定了20 个化合物,主要为环菠萝蜜烷三萜,其中5 个新三萜化合物分别鉴定为cimicidol-3-one(38)、3'-O-乙酰基升麻苷H-1(41)、2'-O-乙酰基升麻苷H-1(42)、(3b,12b,16b)-12-乙酰氧-16,23-环氧-9,19-环羊毛甾烷-22-烯-24-酮3-O-b-D-吡喃木糖苷(44)和升麻碱(54)。新化合物54 为结构新颖的环菠萝蜜烷三萜皂苷生物碱,这是首个发现的具有环菠萝蜜烷三萜骨架的生物碱,也是从升麻属植物中发现的第一个三萜生物碱,它的结构通过多种波谱解析,特别是2D-NMR 的充分应用,并结合化学降解和反应得到证实。此外,还介绍了分离得到的一种具有明显抑制破骨细胞活性的化合物(QS29)的体外活性研究。 第三部分即第四章,综述了升麻属植物中环菠萝蜜烷三萜与其生物活性的构效关系研究现状。 This dissertation consists of three parts. In the first and the second parts, thechemical constituents from the flower buds of Eugenia caryophyllata and therhizomes of Cimicifuga foetida were reported. The third part is a review on astructure-activity relationship of the cycloartane triterpenoid from Cimicifuga species. The first part is composed of two chapters. The chapter 1 is about the isolationand identification of the chemical constituents from the flower buds of E.caryophyllata. A new phenolic glucoside gallate, methyl 2-O-(6’-O-galloyl)-b-D-glucopyranosylbenzoate (24), together with thirty-three known compounds has beenisolated from the ethanol extract of the flower buds of E. caryophyllata throughrepeated column chromatography on normal and reversed phase silica gel. Thestructure of the new compound was elucidated on the basis of spectral and chemicalevidence. Those kno wn compounds were belonged to flavone, triterpenoid, tannin andsome simple compounds. Among them, 12 compounds were isolated from the titleplant for the first time. The second chapter describes the capillary GC-MS analysis ofthe volatile components and the HPLC-MS/MS analysis of the polar constituents fromthe flower buds of E. caryophyllata, in order to detect the main constituents in thecrude extract rapidly and precisely. The third chapter is about the chemical constituents of the rhizomes C. foetida, atraditional Chinese medicine which was used as anti-inflammatory, analgesic andantipyretic agents. Our investigation of the bioactivities constituents of the rhizomesof C. foetida led to the isolation of five new cycloartane triterpenoids, which werecharacterized as cimicidol-3-one (38), 3'-O-acetyl cimicifugoside H-1 (41),2'-O-acetyl cimicifugoside H-1 (42), (3b,12b,16b)-12-acetoxy-16,23-epoxy-9,19-cyclolanost-22-ene-24-one 3-O-b-D-xylopyranoside (44) and cimicifugadine (54),along with fifteen known compounds through repeated column chromatography onnormal and reversed phase silica gel. Among them, 54 is a novel cycloartanealkaloid and first discovered as a new type alkaoid from nature. The structures ofthese compounds were elucidated on the basis of spectral and chemical evidence, andcimicidol-3-one was confirmed by X-ray crystallography analysis. Moreover, onecompound exhibited strong anti-osteoporosis activity in vitro experiment. The fourth part is a review on a structure-activity relationship analysis of thecycloartane triterpenoid from Cimicifuga species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a method employing stir bar sorptive extraction (SBSE) with in situ derivatization, in combination with either thermal or liquid desorption on-line coupled to gas chromatography-mass spectrometry for the analysis of fluoxetine in plasma samples. Ethyl chloroformate was employed as derivatizing agent producing symmetrical peaks. Parameters such as solvent polarity, time for analyte desorption, and extraction time, were evaluated. During the validation process, the developed method presented specificity, linearity (R-2 > 0.99), precision (R.S.D. < 15%), and limits of quantification (LOQ) of 30 and 1.37 pg mL(-1), when liquid and thermal desorption were employed, respectively. This simple and highly sensitive method showed to be adequate for the measurement-of fluoxetine in typical and trace concentration levels. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of chemical preservative compounds is common in the food products industry. Caramel color is the most usual additive used in beverages, desserts, and breads worldwide. During its fabrication process, 2- and 4-methylimidazole (MeI), highly carcinogenic compounds, are generated. In these cases, the development of reliable analytical methods for the monitoring of undesirable compounds is necessary. The primary procedure for the analysis of 2- and 4-MeI is using LC- or GC-MS techniques. These procedures are time-consuming and require large amounts of organic solvents and several pretreatment steps. This prevents the routine use of this procedure. This paper describes a rapid, efficient, and simple method using capillary electrophoresis (CE) for the separation and determination of 2- and 4-MeI in caramel colors. The analyses were performed using a 75 μm i.d. uncoated fused-silica capillary with an effective length of 40 cm and a running electrolyte consisting of 160 mmol L-1 phosphate plus 30% acetonitrile. The pH was adjusted to 2.5 with triethylamine. The analytes were separated within 6 min at a voltage of 20 kV. Method validation revealed good repeatability of both migration time (<0.8% RSD) and peak area (<2% RSD). Analytical curves for 2- and 4-MeI were linear in the 0.4-40 mg L-1 concentration interval. Detection limits were 0.16 mg L-1 for 4-MeI and 0.22 mg L-1 for 2-MeI. The extraction recoveries were satisfactory. The developed method showed many advantages when compared to the previously used method. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work reported in this thesis aimed at applying the methodology known as metabonomics to the detailed study of a particular type of beer and its quality control, with basis on the use of multivariate analysis (MVA) to extract meaningful information from given analytical data sets. In Chapter 1, a detailed description of beer is given considering the brewing process, main characteristics and typical composition of beer, beer stability and the commonly used analytical techniques for beer analysis. The fundamentals of the analytical methods employed here, namely nuclear magnetic resonance (NMR) spectroscopy, gas-chromatography-mass spectrometry (GC-MS) and mid-infrared (MIR) spectroscopy, together with the description of the metabonomics methodology are described shortly in Chapter 2. In Chapter 3, the application of high resolution NMR to characterize the chemical composition of a lager beer is described. The 1H NMR spectrum obtained by direct analysis of beer show a high degree of complexity, confirming the great potential of NMR spectroscopy for the detection of a wide variety of families of compounds, in a single run. Spectral assignment was carried out by 2D NMR, resulting in the identification of about 40 compounds, including alcohols, amino acids, organic acids, nucleosides and sugars. In a second part of Chapter 3, the compositional variability of beer was assessed. For that purpose, metabonomics was applied to 1H NMR data (NMR/MVA) to evaluate beer variability between beers from the same brand (lager), produced nationally but differing in brewing site and date of production. Differences between brewing sites and/or dates were observed, reflecting compositional differences related to particular processing steps, including mashing, fermentation and maturation. Chapter 4 describes the quantification of organic acids in beer by NMR, using different quantitative methods: direct integration of NMR signals (vs. internal reference or vs. an external electronic reference, ERETIC method) and by quantitative statistical methods (using the partial least squares (PLS) regression) were developed and compared. PLS1 regression models were built using different quantitative methods as reference: capillary electrophoresis with direct and indirect detection and enzymatic essays. It was found that NMR integration results generally agree with those obtained by the best performance PLS models, although some overestimation for malic and pyruvic acids and an apparent underestimation for citric acid were observed. Finally, Chapter 5 describes metabonomic studies performed to better understand the forced aging (18 days, at 45 ºC) beer process. The aging process of lager beer was followed by i) NMR, ii) GC-MS, and iii) MIR spectroscopy. MVA methods of each analytical data set revealed clear separation between different aging days for both NMR and GC-MS data, enabling the identification of compounds closely related with the aging process: 5-hydroxymethylfurfural (5-HMF), organic acids, γ-amino butyric acid (GABA), proline and the ratio linear/branched dextrins (NMR domain) and 5-HMF, furfural, diethyl succinate and phenylacetaldehyde (known aging markers) and, for the first time, 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one xii (DDMP) and maltoxazine (by GC-MS domain). For MIR/MVA, no aging trend could be measured, the results reflecting the need of further experimental optimizations. Data correlation between NMR and GC-MS data was performed by outer product analysis (OPA) and statistical heterospectroscopy (SHY) methodologies, enabling the identification of further compounds (11 compounds, 5 of each are still unassigned) highly related with the aging process. Data correlation between sensory characteristics and NMR and GC-MS was also assessed through PLS1 regression models using the sensory response as reference. The results obtained showed good relationships between analytical data response and sensory response, particularly for the aromatic region of the NMR spectra and for GC-MS data (r > 0.89). However, the prediction power of all built PLS1 regression models was relatively low, possibly reflecting the low number of samples/tasters employed, an aspect to improve in future studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Gestão de Sistemas Ambientais

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.