888 resultados para C. Finite element analysis
Resumo:
AIM: To explore the biomechanical effects of the different implantation bone levels of Morse taper implants, employing a finite element analysis (FEA). METHODS: Dental implants (TitamaxCM) with 4x13 mm and 4x11 mm, and their respective abutments with 3.5 mm height, simulating a screwed premolar metal-ceramic crown, had their design performed using the software AnsysWorkbench 10.0. They were positioned in bone blocks, covered by 2.5 mm thickness of mucosa. The cortical bone was designed with 1.5 mm thickness and the trabecular bone completed the bone block. Four groups were formed: group 11CBL (11 mm implant length on cortical bone level), group 11TBL (11 mm implant length on trabecular bone level), group 13CBL (13mm implant length on cortical bone level) and group 13TBL (13 mm implant length on trabecular bone level). Oblique 200 N loads were applied. Von Mises equivalent stresses in cortical and trabecular bones were evaluated with the same design program. RESULTS: The results were shown qualitatively and quantitatively by standard scales for each type of bone. By the results obtained, it can be suggested that positioning the implant completely in trabecular bone brings harm with respect to the generated stresses. Its implantation in the cortical bone has advantages with respect to better anchoring and locking, reflecting a better dissipation of the stresses along the implant/bone interfaces. In addition, the search for anchoring the implant in its apical region in cortical bone is of great value to improve stabilization and consequently better stress distribution. CONCLUSIONS: The implant position slightly below the bone in relation to the bone crest brings advantages as the best long-term predictability with respect to the expected neck bone loss.
Resumo:
Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.
Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study
Resumo:
Despite its importance, implant removal torque can be assessed at present only after implantation. This paper presents a new technique to help clinicians preoperatively evaluate implant stability.
Resumo:
In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact.
Resumo:
Sinotubular junction dilation is one of the most frequent pathologies associated with aortic root incompetence. Hence, we create a finite element model considering the whole root geometry; then, starting from healthy valve models and referring to measures of pathological valves reported in the literature, we reproduce the pathology of the aortic root by imposing appropriate boundary conditions. After evaluating the virtual pathological process, we are able to correlate dimensions of non-functional valves with dimensions of competent valves. Such a relation could be helpful in recreating a competent aortic root and, in particular, it could provide useful information in advance in aortic valve sparing surgery.
Resumo:
The analysis of Komendant's design of the Kimbell Art Museum was carried out in order to determine the effectiveness of the ring beams, edge beams and prestressing in the shells of the roof system. Finite element analysis was not available to Komendant or other engineers of the time to aid them in the design and analysis. Thus, the use of this tool helped to form a new perspective on the Kimbell Art Museum and analyze the engineer's work. In order to carry out the finite element analysis of Kimbell Art Museum, ADINA finite element analysis software was utilized. Eight finite element models (FEM-1 through FEM-8) of increasing complexity were created. The results of the most realistic model, FEM-8, which included ring beams, edge beams and prestressing, were compared to Komendant's calculations. The maximum deflection at the crown of the mid-span surface of -0.1739 in. in FEM-8 was found to be larger than Komendant's deflection in the design documents before the loss in prestressing force (-0.152 in.) but smaller than his prediction after the loss in prestressing force (-0.3814 in.). Komendant predicted a larger longitudinal stress of -903 psi at the crown (vs. -797 psi in FEM-8) and 37 psi at the edge (vs. -347 psi in FEM-8). Considering the strength of concrete of 5000 psi, the difference in results is not significant. From the analysis it was determined that both FEM-5, which included prestressing and fixed rings, and FEM-8 can be successfully and effectively implemented in practice. Prestressing was used in both models and thus served as the main contribution to efficiency. FEM-5 showed that ring and edge beams can be avoided, however an architect might find them more aesthetically appropriate than rigid walls.
Resumo:
For young active dogs of large, fast-growing breeds, diseases of the elbow represent an increasing important disorder. Genetic predisposition, overweight and joint overload have been proposed as possible causes of elbow dysplasia. In this study, the influence of various biomechanical parameters on load transfer in healthy and pathological dog elbows has been analysed by means of a two-dimensional finite element model. Pathological changes in the elbow structure, such as altered material properties or asynchronous bone growth, have a distinct influence on the contact pressure in the joint articulation, internal bone deformation and stresses in the bones. The results obtained support empirical observations made during years of experience and offer explanations for clinical findings that are not yet well understood.
Resumo:
The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety
Resumo:
An extrusion die is used to continuously produce parts with a constant cross section; such as sheets, pipes, tire components and more complex shapes such as window seals. The die is fed by a screw extruder when polymers are used. The extruder melts, mixes and pressures the material by the rotation of either a single or double screw. The polymer can then be continuously forced through the die producing a long part in the shape of the die outlet. The extruded section is then cut to the desired length. Generally, the primary target of a well designed die is to produce a uniform outlet velocity without excessively raising the pressure required to extrude the polymer through the die. Other properties such as temperature uniformity and residence time are also important but are not directly considered in this work. Designing dies for optimal outlet velocity variation using simple analytical equations are feasible for basic die geometries or simple channels. Due to the complexity of die geometry and of polymer material properties design of complex dies by analytical methods is difficult. For complex dies iterative methods must be used to optimize dies. An automated iterative method is desired for die optimization. To automate the design and optimization of an extrusion die two issues must be dealt with. The first is how to generate a new mesh for each iteration. In this work, this is approached by modifying a Parasolid file that describes a CAD part. This file is then used in a commercial meshing software. Skewing the initial mesh to produce a new geometry was also employed as a second option. The second issue is an optimization problem with the presence of noise stemming from variations in the mesh and cumulative truncation errors. In this work a simplex method and a modified trust region method were employed for automated optimization of die geometries. For the trust region a discreet derivative and a BFGS Hessian approximation were used. To deal with the noise in the function the trust region method was modified to automatically adjust the discreet derivative step size and the trust region based on changes in noise and function contour. Generally uniformity of velocity at exit of the extrusion die can be improved by increasing resistance across the die but this is limited by the pressure capabilities of the extruder. In optimization, a penalty factor that increases exponentially from the pressure limit is applied. This penalty can be applied in two different ways; the first only to the designs which exceed the pressure limit, the second to both designs above and below the pressure limit. Both of these methods were tested and compared in this work.