976 resultados para Bulk amorphous materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed ab initio molecular dynamics simulations to generate an atomic structure model of amorphous hafnium oxide (a-HfO(2)) via a melt-and-quench scheme. This structure is analyzed via bond-angle and partial pair distribution functions. These results give a Hf-O average nearest-neighbor distance of 2.2 angstrom, which should be compared to the bulk value, which ranges from 1.96 to 2.54 angstrom. We have also investigated the neutral O vacancy and a substitutional Si impurity for various sites, as well as the amorphous phase of Hf(1-x)Si(x)O(2) for x=0.25, 0375, and 0.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Soil bulk density values are needed to convert organic carbon content to mass of organic carbon per unit area. However, field sampling and measurement of soil bulk density are labour-intensive, costly and tedious. Near-infrared reflectance spectroscopy (NIRS) is a physically non-destructive, rapid, reproducible and low-cost method that characterizes materials according to their reflectance in the near-infrared spectral region. The aim of this paper was to investigate the ability of NIRS to predict soil bulk density and to compare its performance with published pedotransfer functions. The study was carried out on a dataset of 1184 soil samples originating from a reforestation area in the Brazilian Amazon basin, and conventional soil bulk density values were obtained with metallic ""core cylinders"". The results indicate that the modified partial least squares regression used on spectral data is an alternative method for soil bulk density predictions to the published pedotransfer functions tested in this study. The NIRS method presented the closest-to-zero accuracy error (-0.002 g cm-3) and the lowest prediction error (0.13 g cm-3) and the coefficient of variation of the validation sets ranged from 8.1 to 8.9% of the mean reference values. Nevertheless, further research is required to assess the limits and specificities of the NIRS method, but it may have advantages for soil bulk density predictions, especially in environments such as the Amazon forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a criterion considering the topological instability (lambda) and the differences in the electronegativity of the constituent elements (Delta e) was applied to the Al-La and Al-Ni-La systems in order to predict the best glass-forming compositions. The results were compared with literature data and with our own experimental data for the Al-La-Ni system. The alloy described in the literature as the best glass former in the Al-La system is located near the point with local maximum for the lambda.Delta e criterion. A good agreement was found between the predictions of the lambda.Delta e criterion and literature data in the Al-La-Ni system, with the region of the best glass-forming ability (GFA) and largest supercooled liquid region (Delta T(x)) coinciding with the best compositional region for amorphization indicated by the lambda.Delta e criterion. Four new glassy compositions were found in the Al-La-Ni system, with the best predicted composition presenting the best glass-forming ability observed so far for this system. Although the lambda.Delta e criterion needs further refinements for completely describe the glass-forming ability in the Al-La and Al-La-Ni systems, the results demonstrated that this criterion is a good tool to predict new glass-forming compositions. (C) 2010 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have found photoinduced second harmonic generation at wavelength 1064 nm during bicolor Nd:YAG laser coherent treatment of TeO(2)-ZnO and GeO(2)-PbO amorphous films. The maximally achieved second order susceptibility was equal to about 1.02 pm/V. Correlation of the induced second order susceptibility with local sample heating and induced birefringence may indicate an occurrence of local phase transitions from amorphous glass-like phase to non-centrosymmetry metastable phases. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a field-effect phototransistor with a channel comprising a thin nanocrystalline silicon transport layer and a thicker hydrogenated amorphous silicon absorption layer. The semiconductor and dielectric layers were deposited by radio-frequency plasma enhanced chemical vapor deposition. The phototransistor with channel length of 24 microns and photosensitive area of 1.4 mm(2) shows an off-current of about 1 pA, and high photoconductive gain in the subthreshold region. Measurements of the quantum efficiency at different incident light intensities and biasing conditions, along with spectral-response characteristics, and threshold voltage stability characterization demonstrate the feasibility of the phototransistor for low light level detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160 degrees C and 24 h. A band gap of 3.06 +/- 0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 min of irradiation of a 10 ppm dye aqueous solution and 1 g L-1 of TNS catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.