962 resultados para Built-in test
Resumo:
Leprosy is an ancient infectious disease caused by Mycobacterium leprae. According to comparative genomics studies, this disease originated in Eastern Africa or the Near East and spread with successive human migrations. The Europeans and North Africans introduced leprosy into West Africa and the Americas within the past 500 years. In Brazil, this disease arrived with the colonizers who disembarked at the first colonies, Rio de Janeiro, Salvador and Recife, at the end of the sixteenth century, after which it was spread to the other states. In 1854, the first leprosy cases were identified in State of Amazonas in the north of Brazil. The increasing number of leprosy cases and the need for treatment and disease control led to the creation of places to isolate patients, known as leprosaria. One of them, Colonia Antônio Aleixo was built in Amazonas in 1956 according to the most advanced recommendations for isolation at that time and was deactivated in 1979. The history of the Alfredo da Matta Center (AMC), which was the first leprosy dispensary created in 1955, parallels the history of leprosy in the state. Over the years, the AMC has become one of the best training centers for leprosy, general dermatology and sexually transmitted diseases in Brazil. In addition to being responsible for leprosy control programs in the state, the AMC has carried out training programs on leprosy diagnosis and treatment for health professionals in Manaus and other municipalities of the state, aiming to increase the coverage of leprosy control activities. This paper provides a historical overview of leprosy in State of Amazonas, which is an endemic state in Brazil.
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
BACKGROUND: Multiple interventions were made to optimize the medication process in our intensive care unit (ICU). 1 Transcriptions from the medical order form to the administration plan were eliminated by merging both into a single document; 2 the new form was built in a logical sequence and was highly structured to promote completeness and standardization of information; 3 frequently used drug names, approved units, and fixed routes were pre-printed; 4 physicians and nurses were trained with regard to the correct use of the new form. This study was aimed at evaluating the impact of these interventions on clinically significant types of medication errors. METHODS: Eight types of medication errors were measured by a prospective chart review before and after the interventions in the ICU of a public tertiary care hospital. We used an interrupted time-series design to control the secular trends. RESULTS: Over 85 days, 9298 lines of drug prescription and/or administration to 294 patients, corresponding to 754 patient-days were collected and analysed for the three series before and three series following the intervention. Global error rate decreased from 4.95 to 2.14% (-56.8%, P < 0.001). CONCLUSIONS: The safety of the medication process in our ICU was improved by simple and inexpensive interventions. In addition to the optimization of the prescription writing process, the documentation of intravenous preparation, and the scheduling of administration, the elimination of the transcription in combination with the training of users contributed to reducing errors and carried an interesting potential to increase safety.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
The aim of the present study was to measure the changes in resting energy expenditure (REE) induced by malaria and to assess to what extent they are related to fever and nutritional status. The REE of 19 Gambian children (mean age +/- SEM, 9 +/- 1 y; weight, 24 +/- 2 kg; expected weight for height 86 +/- 1%) were measured with a hood system at repeated intervals at the onset of malaria crisis (test A), 3 to 4 d after therapy (test B), and 14 to 21 d later (test C). Axillary temperature averaged 39.2 +/- 0.1, 36.6 +/- 0.1, and 36.7 +/- 0.1 degrees C in the tests A, B, and C, respectively. REE in test A was significantly higher than REE in test B (223 +/- 10 versus 174 +/- 8 kJ/kg.d, p less than 0.0001), but in test C (169 +/- 8 kJ/kg.d), it did not differ from that observed in test B. The percentage of increase in REE was significantly correlated with the difference in axillary temperature (r = 0.46, p less than 0.05); the slope of the regression line indicated an increase of 6.9% in REE/degree C of fever. Furthermore, the individual increase in REE/degree C was correlated to the percentage of weight for height of the children (r = 0.54, p less than 0.05), indicating that the child's nutritional status influences the magnitude of the hypermetabolism due to fever. We concluded that Gambian children suffering from an acute episode of malaria have an increase in REE averaging 30%; however, REE promptly returns to baseline value a few days after the beginning of therapy.
Resumo:
There is a need to measure energy expenditure in man for a period of 24 h or even several days. The respiration chamber offers a unique opportunity to reach this goal. It allows the study of energy and nutrient balance; from the latter, acute changes in body composition can be obtained. The respiration chamber built in Lausanne is an air-tight room (5 m long, 2.5 m wide, and 2.5 m high) which forms an open circuit ventilated indirect calorimeter. The physical activity of the subject inside the chamber is continuously measured using a radar system based on the Doppler effect. Energy expenditure of obese and lean women was continuously measured over 24 h and diet-induced thermogenesis was assessed by using an approach which allows one to subtract the energy expended for physical activity from the total energy expenditure. Expressed in absolute terms, total energy expenditure was more elevated in the obese than in the lean controls. Basal metabolic rate was also higher in the obese than in the controls, but diet-induced thermogenesis was found to be blunted in the obese. In a second study, the effect of changing the carbohydrate/lipid content of the diet on fuel utilization was assessed in young healthy subjects with the respiration chamber. After a 7-day adaptation to a high-carbohydrate low-fat diet, the fuel mixture oxidized matched the change in nutrient intake. A last example of the use of the respiration chamber is the thermogenic response and changes in body composition due to a 7-day overfeeding of carbohydrate. Diet-induced thermogenesis was found to be 27%; on the last day of overfeeding, carbohydrate balance was reached by oxidation of 50% of the carbohydrate intake, the remaining 50% being converted into lipid.
Resumo:
The aim of the present study was to determine whether an increase in resting energy expenditure (REE) contributes to the impaired nutritional status of Gambian children infected by a low level of infection with pathogenic helminths. The REE of 24 children infected with hookworm, Ascaris, Strongyloides, or Trichuris (mean +/- SEM age = 11.9 +/- 0.1 years) and eight controls without infection (mean +/- SEM age = 11.8 +/- 0.1 years) were measured by indirect calorimetry with a hood system (test A). This measurement was repeated after treatment with 400 mg of albendazole (patients) or a placebo (controls) (test B). When normalized for fat free mass, REE in test A was not different in the patients (177 +/- 2 kJ/kg x day) and in the controls (164 +/- 7 kJ/kg x day); furthermore, REE did not change significantly after treatment in the patients (173 +/- 3 kJ/kg x day) or in the controls (160 +/- 8 kJ/kg x day). There was no significant difference in the respiratory quotient between patients and controls, nor between tests A and B. It is concluded that a low level of helminth infection does not affect significantly the energy metabolism of Gambian children.
Resumo:
BACKGROUND: In Switzerland, nurses are allowed to prescribe and administer morphine in emergency situations without a doctor. Still, nurses and other health professionals are often reluctant to prescribe and administer morphine for pain management in patients. No valid French-speaking instrument is available in Switzerland to assess the attitudes of nurses and other health professionals towards the prescription and administration of morphine. In this study, we evaluated the psychometric properties of the French version of the questionnaire "Attitudes towards morphine use". METHODS: The instrument was derived from an Italian version. Forward and back translations of the questionnaire were performed. Item analysis and construct validity were assessed between April and December 2010 in a cross sectional study including five Swiss hospitals in a sample of 588 health professionals (533 nurses, mean age 38.3 ± 10.2 years). Thirty subjects participated in test-retest reliability. RESULTS: The time to complete the instrument ranged between 12 and 15 minutes and neither floor nor ceiling effect were found. The initial 24-item instrument showed an intraclass correlation (ICC) of 0.69 (95% CI: 0.64 to 0.73, P < 0.001), and a Cronbach's α of 0.700. Factor analysis led to a six-component solution explaining 52.4% of the total variance. After excluding five items, the shortened version showed an ICC of 0.74 (95% CI, 0.70 to 0.77, P < 0.001) and a Cronbach's α of 0.741. Factor analysis led to a five-component solution explaining 54.3% of the total variance. The five components were named "risk of addiction/dependence"; "operational reasons for not using morphine"; "risk of escalation"; "other (non-dependence) risks" and "external (non-operational) reasons". In test-retest, the shortened instrument showed an ICC of 0.797 (95% CI, 0.630 to 0.911, P < 0.001) and a Cronbach's α of 0.797. CONCLUSIONS: The 19-item shortened instrument assessing attitudes towards the prescription and administration of morphine showed adequate content and construct validity.
Resumo:
In the context of the investigation of the use of automated fingerprint identification systems (AFIS) for the evaluation of fingerprint evidence, the current study presents investigations into the variability of scores from an AFIS system when fingermarks from a known donor are compared to fingerprints that are not from the same source. The ultimate goal is to propose a model, based on likelihood ratios, which allows the evaluation of mark-to-print comparisons. In particular, this model, through its use of AFIS technology, benefits from the possibility of using a large amount of data, as well as from an already built-in proximity measure, the AFIS score. More precisely, the numerator of the LR is obtained from scores issued from comparisons between impressions from the same source and showing the same minutia configuration. The denominator of the LR is obtained by extracting scores from comparisons of the questioned mark with a database of non-matching sources. This paper focuses solely on the assignment of the denominator of the LR. We refer to it by the generic term of between-finger variability. The issues addressed in this paper in relation to between-finger variability are the required sample size, the influence of the finger number and general pattern, as well as that of the number of minutiae included and their configuration on a given finger. Results show that reliable estimation of between-finger variability is feasible with 10,000 scores. These scores should come from the appropriate finger number/general pattern combination as defined by the mark. Furthermore, strategies of obtaining between-finger variability when these elements cannot be conclusively seen on the mark (and its position with respect to other marks for finger number) have been presented. These results immediately allow case-by-case estimation of the between-finger variability in an operational setting.
Resumo:
The aim of the present paper was to evaluate cyst formation and growth parameters of Borrelia garinii in a range of media differing in formulation and cost. A qualitative assessment of morphology and motility of B. garinii was conducted. All media were prepared aseptically and used in test tubes or Petri dishes. For each medium, the initial spirochete concentration was standardized to 10³ spirochets/mL. The following culture media were suitable to grow B. garinii: Barbour-Stoenner-Kelly, brain heart infusion and PMR. Growth was minimal at six weeks post-inoculation and maximum spirochete density was observed between 9-12 weeks. Often, the cultures developed cysts of different sizes, isolated or in groups, with a spiraled portion of variable sizes, mainly in unfavorable culture media. Brazilian Lyme disease-like illness, also known as Baggio-Yoshinari syndrome (BYS), is a new and interesting emerging tick-borne disease, caused by Borrelia burgdorferi sensu lato spirochetes, only during its cystic forms. It has been assumed that the peculiar clinical and laboratory features of BYS are consequential to the absence of a human sucker Ixodes ricinus complex tick at risk areas in Brazil, supporting the concept that the borrelia phenotypic expression pattern is modified as it is transmitted through the host.
Resumo:
In vivo dosimetry is a way to verify the radiation dose delivered to the patient in measuring the dose generally during the first fraction of the treatment. It is the only dose delivery control based on a measurement performed during the treatment. In today's radiotherapy practice, the dose delivered to the patient is planned using 3D dose calculation algorithms and volumetric images representing the patient. Due to the high accuracy and precision necessary in radiation treatments, national and international organisations like ICRU and AAPM recommend the use of in vivo dosimetry. It is also mandatory in some countries like France. Various in vivo dosimetry methods have been developed during the past years. These methods are point-, line-, plane- or 3D dose controls. A 3D in vivo dosimetry provides the most information about the dose delivered to the patient, with respect to ID and 2D methods. However, to our knowledge, it is generally not routinely applied to patient treatments yet. The aim of this PhD thesis was to determine whether it is possible to reconstruct the 3D delivered dose using transmitted beam measurements in the context of narrow beams. An iterative dose reconstruction method has been described and implemented. The iterative algorithm includes a simple 3D dose calculation algorithm based on the convolution/superposition principle. The methodology was applied to narrow beams produced by a conventional 6 MV linac. The transmitted dose was measured using an array of ion chambers, as to simulate the linear nature of a tomotherapy detector. We showed that the iterative algorithm converges quickly and reconstructs the dose within a good agreement (at least 3% / 3 mm locally), which is inside the 5% recommended by the ICRU. Moreover it was demonstrated on phantom measurements that the proposed method allows us detecting some set-up errors and interfraction geometry modifications. We also have discussed the limitations of the 3D dose reconstruction for dose delivery error detection. Afterwards, stability tests of the tomotherapy MVCT built-in onboard detector was performed in order to evaluate if such a detector is suitable for 3D in-vivo dosimetry. The detector showed stability on short and long terms comparable to other imaging devices as the EPIDs, also used for in vivo dosimetry. Subsequently, a methodology for the dose reconstruction using the tomotherapy MVCT detector is proposed in the context of static irradiations. This manuscript is composed of two articles and a script providing further information related to this work. In the latter, the first chapter introduces the state-of-the-art of in vivo dosimetry and adaptive radiotherapy, and explains why we are interested in performing 3D dose reconstructions. In chapter 2 a dose calculation algorithm implemented for this work is reviewed with a detailed description of the physical parameters needed for calculating 3D absorbed dose distributions. The tomotherapy MVCT detector used for transit measurements and its characteristics are described in chapter 3. Chapter 4 contains a first article entitled '3D dose reconstruction for narrow beams using ion chamber array measurements', which describes the dose reconstruction method and presents tests of the methodology on phantoms irradiated with 6 MV narrow photon beams. Chapter 5 contains a second article 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations. A dose reconstruction process specific to the use of the tomotherapy MVCT detector is presented in chapter 6. A discussion and perspectives of the PhD thesis are presented in chapter 7, followed by a conclusion in chapter 8. The tomotherapy treatment device is described in appendix 1 and an overview of 3D conformai- and intensity modulated radiotherapy is presented in appendix 2. - La dosimétrie in vivo est une technique utilisée pour vérifier la dose délivrée au patient en faisant une mesure, généralement pendant la première séance du traitement. Il s'agit de la seule technique de contrôle de la dose délivrée basée sur une mesure réalisée durant l'irradiation du patient. La dose au patient est calculée au moyen d'algorithmes 3D utilisant des images volumétriques du patient. En raison de la haute précision nécessaire lors des traitements de radiothérapie, des organismes nationaux et internationaux tels que l'ICRU et l'AAPM recommandent l'utilisation de la dosimétrie in vivo, qui est devenue obligatoire dans certains pays dont la France. Diverses méthodes de dosimétrie in vivo existent. Elles peuvent être classées en dosimétrie ponctuelle, planaire ou tridimensionnelle. La dosimétrie 3D est celle qui fournit le plus d'information sur la dose délivrée. Cependant, à notre connaissance, elle n'est généralement pas appliquée dans la routine clinique. Le but de cette recherche était de déterminer s'il est possible de reconstruire la dose 3D délivrée en se basant sur des mesures de la dose transmise, dans le contexte des faisceaux étroits. Une méthode itérative de reconstruction de la dose a été décrite et implémentée. L'algorithme itératif contient un algorithme simple basé sur le principe de convolution/superposition pour le calcul de la dose. La dose transmise a été mesurée à l'aide d'une série de chambres à ionisations alignées afin de simuler la nature linéaire du détecteur de la tomothérapie. Nous avons montré que l'algorithme itératif converge rapidement et qu'il permet de reconstruire la dose délivrée avec une bonne précision (au moins 3 % localement / 3 mm). De plus, nous avons démontré que cette méthode permet de détecter certaines erreurs de positionnement du patient, ainsi que des modifications géométriques qui peuvent subvenir entre les séances de traitement. Nous avons discuté les limites de cette méthode pour la détection de certaines erreurs d'irradiation. Par la suite, des tests de stabilité du détecteur MVCT intégré à la tomothérapie ont été effectués, dans le but de déterminer si ce dernier peut être utilisé pour la dosimétrie in vivo. Ce détecteur a démontré une stabilité à court et à long terme comparable à d'autres détecteurs tels que les EPIDs également utilisés pour l'imagerie et la dosimétrie in vivo. Pour finir, une adaptation de la méthode de reconstruction de la dose a été proposée afin de pouvoir l'implémenter sur une installation de tomothérapie. Ce manuscrit est composé de deux articles et d'un script contenant des informations supplémentaires sur ce travail. Dans ce dernier, le premier chapitre introduit l'état de l'art de la dosimétrie in vivo et de la radiothérapie adaptative, et explique pourquoi nous nous intéressons à la reconstruction 3D de la dose délivrée. Dans le chapitre 2, l'algorithme 3D de calcul de dose implémenté pour ce travail est décrit, ainsi que les paramètres physiques principaux nécessaires pour le calcul de dose. Les caractéristiques du détecteur MVCT de la tomothérapie utilisé pour les mesures de transit sont décrites dans le chapitre 3. Le chapitre 4 contient un premier article intitulé '3D dose reconstruction for narrow beams using ion chamber array measurements', qui décrit la méthode de reconstruction et présente des tests de la méthodologie sur des fantômes irradiés avec des faisceaux étroits. Le chapitre 5 contient un second article intitulé 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations'. Un procédé de reconstruction de la dose spécifique pour l'utilisation du détecteur MVCT de la tomothérapie est présenté au chapitre 6. Une discussion et les perspectives de la thèse de doctorat sont présentées au chapitre 7, suivies par une conclusion au chapitre 8. Le concept de la tomothérapie est exposé dans l'annexe 1. Pour finir, la radiothérapie «informationnelle 3D et la radiothérapie par modulation d'intensité sont présentées dans l'annexe 2.
Resumo:
Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.
Resumo:
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench. [Authors]
Resumo:
The O(6)-methylguanine-DNA methyltransferase (MGMT) gene is located at chromosome 10q26 and codes for a DNA repair enzyme that--if active--can counteract the effects of alkylating chemotherapy. Malignant gliomas often have the MGMT gene inactivated due to aberrant methylation of its promoter region. The assessment of the MGMT promoter methylation status has become of clinical relevance as a molecular marker associated with response to alkylating chemotherapy and prolonged survival of glioblastoma patients. MGMT promoter methylation testing is also on the merge of being used as a marker for patient selection within clinical trials, e.g., the current CENTRIC trial that is specifically focusing on patients with MGMT promoter-methylated glioblastomas. In anaplastic gliomas, MGMT promoter methylation is a favorable prognostic marker independent of the type of therapy, i.e., radio- or chemotherapy. This occurrence might be associated with the high incidence of other prognostically favorable molecular markers in these tumors, such as IDH1 mutation, 1p/19q deletion or yet to be identified novel aberrations. A variety of different methods are being used to assess MGMT promoter methylation in clinical samples, which may give rise to inter-laboratory variations in test results. Immunohistochemical determination of MGMT protein expression has not proven reliable for diagnostic purposes. This brief review article aims to summarize the main aspects of MGMT promoter methylation testing in contemporary neuro-oncology, in particular its value as a clinically useful molecular marker, putting it into the context of other molecular markers of clinical use in gliomas of adult patients.