839 resultados para Building Design


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change mitigation is driving demand for energy-efficient and environmentally conscious commercial buildings in Australia. In the Australian subtropics, high rainfall, warm weather and humidity present unique challenges and opportunities for the architects tasked with designing eco-sensitive projects. The case of the James Street Market in Brisbane’s Fortitude Valley shows that climate-responsive design is an effective approach for reducing the environmental impact of commercial developments. The James Street Market combines climate-responsiveness, environmentally sensitive design strategies and smart planning to create a more sustainable retail precinct. This paper details the design strategies featured in the James Street Market, the project that kicked off a renaissance in climate-responsive commercial building design in Brisbane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, engineers and educators worked together to adapt and apply the ecological footprint (EF) methodology to an early learning centre in Brisbane, Australia. Results were analysed to determine how environmental impact can be reduced at the study site and more generally across early childhood settings. It was found that food, transport and energy consumption had the largest impact on the centre’s overall footprint. In transport and energy, early childhood centres can reduce their impact through infrastructure and cultural change, in association with changed curriculum strategies. Building design, the type of energy purchased and appliance usage can all be modified to reduce the energy footprint. The transport footprint can be reduced through more families using active and public transport, which can be encouraged by providing information, support and facilities and appropriate siting of new centres. Introducing the concept of ecological footprint in early childhood education may be an effective way to educate children, staff and parents on the links between the food they eat, land usage and environmental impact. This study responds directly to the call in this journal for research focused on early childhood education and for more to be made of interdisciplinary research opportunities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design grows out of the rich culture of circus and the rugged dynamic topography of Chongqing. The site for this project is nestled on the banks of the mighty Yangzte, China's longest river: a vast sweeping watery ribbon carving its way through the mountainous terrain. This swirling sinuous environmental thread replicates in nature the tweisting ribbons circling the gyrating circus gymnast. The project grows from intertwining these swirling parallel conceptions of 'ribbon'. A multi-layered envelope of glass and steel ribbons creates a dome like enclosure that wraps itself around the dynamic performing heart of the circus. The main auditorium and stage area are accommodated in this space. Key public elements and facilities are located adjacent to the new riverfront boulevard maximising the positive relationship with this attractive landscape zone. Service and support areas are located along the southern boundary. Key Statistics; Client: Chongqing Broadcast Bureau Developer: Chongqing Real Estate Site: 3.3 Ha Development: Total G.F.A.: 36,800m2 Project Cost: Total Investment: RMB 300 Million (A$48 million) Other competition participants were BIG-Bjarke Ingels Group (Denmark)/arquitectonica (USA)/Beijing Architectural Design Institute/East China Architectural Design Institute/China Architectural Design Academy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little research has examined the extent to which active ageing is facilitated by family and nonfamilial support persons of older adults with intellectual disabilities. This study explores the role played by key unpaid carers/support persons of older adults with lifelong intellectual disabilities in facilitating "active ageing." Little research has examined the extent to which active ageing is facilitated by family and nonfamilial support persons of older adults with intellectual disabilities. This study explores the role played by key unpaid carers/support persons of older adults with lifelong intellectual disabilities in facilitating “active ageing.” All key social network members conceived active ageing to mean ongoing activity. Family and extended family members were found to play a crucial role in facilitating independent living and providing opportunities for recreational pursuits for those living in group homes. Members of religious organizations and group home staff provided the same types of opportunities where family support was absent. The findings suggest the need for improvements in resource provision, staff training, and group home policy and building design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the face of Australia’s disaster-prone environment, architects Ian Weir and James Davidson are reconceptualising how our residential buildings might become more resilient to fire, flood and cyclone. With their first-hand experience of natural disasters, James, director of Emergency Architects Australia (EAA), and Ian, one of Australia’s few ‘bushfire architects’, discuss the ways we can design with disaster in mind. Dr Ian Weir is one of Australia’s few ‘bushfire architects’. Exploring a holistic ‘ground up’ approach to bushfire where landscape, building design and habitation patterns are orchestrated to respond to site-specific fire characteristics. Ian’s research is developed through design studio teaching at QUT and through built works in Western Australia’s fire prone forests and heathlands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change is leading to an increased frequency and severity of heat waves. Spells of several consecutive days of unusually high temperatures have led to increased mortality rates for the more vulnerable in the community. The problem is compounded by the escalating energy costs and increasing peak electrical demand as people become more reliant on air conditioning. Domestic air conditioning is the primary determinant of peak power demand which has been a major driver of higher electricity costs. This report presents the findings of multidisciplinary research which develops a national framework to evaluate the potential impacts of heat waves. It presents a technical, social and economic approach to adapt Australian residential buildings to ameliorate the impact of heat waves in the community and reduce the risk of its adverse outcomes. Through the development of a methodology for estimating the impact of global warming on key weather parameters in 2030 and 2050, it is possible to re-evaluate the size and anticipated energy consumption of air conditioners in future years for various climate zones in Australia. Over the coming decades it is likely that mainland Australia will require more cooling than heating. While in some parts the total electricity usage for heating and cooling may remain unchanged, there is an overall significant increase in peak electricity demand, likely to further drive electricity prices. Through monitoring groups of households in South Australia, New South Wales and Queensland, the impact of heat waves on both thermal comfort sensation and energy consumption for air conditioning has been evaluated. The results show that households are likely to be able to tolerate slightly increased temperature levels indoors during periods of high outside temperatures. The research identified that household electricity costs are likely to rise above what is currently projected due to the impact of climate change. Through a number of regulatory changes to both household design and air conditioners, this impact can be minimised. A number of proposed retrofit and design measures are provided, which can readily reduce electricity usage for cooling at minimal cost to the household. Using a number of social research instruments, it is evident that households are willing to change behaviour rather than to spend money. Those on lower income and elderly individuals are the least able to afford the use of air conditioning and should be a priority for interventions and assistance. Increasing community awareness of cost effective strategies to manage comfort and health during heat waves is a high priority recommended action. Overall, the research showed that a combined approach including behaviour change, dwelling modification and improved air conditioner selection can readily adapt Australian households to the impact of heat waves, reducing the risk of heat related deaths and household energy costs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cycling interaction between climate change and buildings is of dynamic nature. On one hand, buildings have contributed significantly to the process of human‐induced climate change. On the other hand, climate change is also expected to impact on many aspects of buildings, including building design, construction, and operation. In this entry, these two aspects of knowledge are reviewed. The potential strategies of building design and operation to reduce the greenhouse gas emissions from buildings and to prepare the buildings to withstand a range of possible climate change scenarios are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dementia is an irreversible and incurable syndrome that leads to progressive impairment of cognitive functions and behavioural and psychological symptoms such as agitation, depression and psychosis. Appropriate environmental conditions can help delay its onset and progression, and indoor environmental (IE) factors have a major impact. However, there is no firm understanding of the full range of relevant IE factors and their impact levels. This paper describes a preliminary study to investigate the effects of IE on Hong Kong residential care homes (RCH) dementia residents. This involved six purposively selected focus groups, each comprising the main stakeholders of the dementia residents’ caregivers, RCH staff and/or registered nurses, and architects. Using the Critical Incident Technique, the main context and experiences of behavioural problems of dementia residents caused by IE were explored and the key causal RCH IE quality factors identified, together with the associated responses and stress levels involved. The findings indicate that the acoustic environment, lighting and thermal environment are the most important influencing factors. Many of the remedies provided by the focus groups are quite simple to carry out and are summarised in the form of recommendations to current RCHs providers and users. The knowledge acquired in this initial study will help enrich the knowledge of IE design for dementiaspecific residential facilities. It also provides some preliminary insights for healthcare policymakers and practitioners in the building design/facilities management and dementia-care sectors into the IE factors contributing to a more comfortable, healthy and sustainable RCH living environment in Hong Kong.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australia’s building stock includes many older commercial buildings with numerous factors that impact energy performance and indoor environment quality. The built environment industry has generally focused heavily on improving physical building design elements for greater energy efficiency (such as retrofits and environmental upgrades), however there are noticeable ‘upper limits’ to performance improvements in these areas. To achieve a stepchange improvement in building performance, the authors propose that additional components need to be addressed in a whole of building approach, including the way building design elements are managed and the level of stakeholder engagement between owners, tenants and building managers. This paper focuses on the opportunities provided by this whole-of-building approach, presenting the findings of a research project undertaken through the Sustainable Built Environment National Research Centre (SBEnrc) in Australia. Researchers worked with a number of industry partners over two years to investigate issues facing stakeholders at base building and tenancy levels, and the barriers to improving building performance. Through a mixed-method, industry-led research approach, five ‘nodes’ were identified in whole-of-building performance evaluation, each with interlinking and overlapping complexities that can influence performance. The nodes cover building management, occupant experience, indoor environment quality, agreements and culture, and design elements. This paper outlines the development and testing of these nodes and their interactions, and the resultant multi-nodal tool, called the ‘Performance Nexus’ tool. The tool is intended to be of most benefit in evaluating opportunities for performance improvement in the vast number of existing low-performing building stock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the results of a full-scale research project undertaken to assess scour losses/gains for modular tray green roof specimens placed on a mock-up building, and identify important factors to consider for wind design criteria. Visual assessment of the experimental results showed that usage of vegetation, parapet height, wind direction, and test duration were the predominant factors affecting scour resistance of the growth media in tested specimens. Statistical analysis results indicated that the differences in soil losses measured among Phase 2’s test trials were more significant than those in Phase 1. This was attributed to the lack of parapet, cornering wind conditions, and longer test duration found in Phase 2. Findings presented in this paper constitute a benchmark for future research to improve the knowledge gap that exists in green roof wind design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an ongoing debate about the reasons for and factors contributing to healthcare-associated infection (HAI). Different solutions have been proposed over time to control the spread of HAI, with more focus on hand hygiene than on other aspects such as preventing the aerial dissemination of bacteria. Yet, it emerges that there is a need for a more pluralistic approach to infection control; one that reflects the complexity of the systems associated with HAI and involves multidisciplinary teams including hospital doctors, infection control nurses, microbiologists, architects, and engineers with expertise in building design and facilities management. This study reviews the knowledge base on the role that environmental contamination plays in the transmission of HAI, with the aim of raising awareness regarding infection control issues that are frequently overlooked. From the discussion presented in the study, it is clear that many unknowns persist regarding aerial dissemination of bacteria, and its control via cleaning and disinfection of the clinical environment. There is a paucity of good-quality epidemiological data, making it difficult for healthcare authorities to develop evidence-based policies. Consequently, there is a strong need for carefully designed studies to determine the impact of environmental contamination on the spread of HAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate has been, throughout modern history, a primary attribute for attracting residents to the “Sunshine States” of Florida (USA) and Queensland (Australia). The first major group of settlers capitalized on the winter growing season to support a year-­‐round agricultural economy. As these economies developed, the climate attracted tourism and retirement industries. Yet as Florida and Queensland have blossomed under beneficial climates, the stresses acting on the natural environment are exacting a toll. Southeast Florida and eastern Queensland are among the most vulnerable coastal metropolitan areas in the world. In these places the certainty of sea level rise is measurable with impacts, empirically observable, that will continue to increase regardless of any climate change mitigation.1 The cities of the subtropics share a series of paradoxes relating to climate, resources, environment, and culture. As the subtropical climate entices new residents and visitors there are increasing costs associated with urban infrastructure and the ravages of violent weather. The carefree lifestyle of subtropical cities is increasingly dependent on scarce water and energy resources and the flow of tangible goods that support a trade economy. The natural environment is no longer exploitable as the survival of the human environment is contingent upon the ability of natural ecosystems to absorb the impact of human actions. The quality of subtropical living is challenged by the mounting pressures of population growth and rapid urbanization yet urban form and contemporary building design fail to take advantage of the subtropical zone’s natural attributes of abundant sunshine, cooling breezes and warm temperatures. Yet, by building a global network of local knowledge, subtropical cities like Brisbane, the City of Gold Coast and Fort Lauderdale, are confidently leading the way with innovative and inventive solutions for building resiliency and adaptation to climate change. The Centre for Subtropical Design at Queensland University of Technology organized the first international Subtropical Cities conference in Brisbane, Australia, where the “fault-­‐lines” of subtropical cities at breaking points were revealed. The second conference, held in 2008, shed a more optimistic light with the theme "From fault-­‐lines to sight-­‐lines -­‐ subtropical urbanism in 20-­‐20" highlighting the leadership exemplified in the vitality of small and large works from around the subtropical world. Yet beyond these isolated local actions the need for more cooperation and collaboration was identified as the key to moving beyond the problems of the present and foreseeable future. The spirit of leadership and collaboration has taken on new force, as two institutions from opposite sides of the globe joined together to host the 3rd international conference Subtropical Cities 2011 -­‐ Subtropical Urbanism: Beyond Climate Change. The collaboration between Florida Atlantic University and the Queensland University of Technology to host this conference, for the first time in the United States, forges a new direction in international cooperative research to address urban design solutions that support sustainable behaviours, resiliency and adaptation to sea level rise, green house gas (GHG) reduction, and climate change research in the areas of architecture and urban design, planning, and public policy. With southeast Queensland and southern Florida as contributors to this global effort among subtropical urban regions that share similar challenges, opportunities, and vulnerabilities our mutual aim is to advance the development and application of local knowledge to the global problems we share. The conference attracted over 150 participants from four continents. Presentations by authors were organized into three sub-­‐themes: Cultural/Place Identity, Environment and Ecology, and Social Economics. Each of the 22 papers presented underwent a double-­‐blind peer review by a panel of international experts among the disciplines and research areas represented. The Centre for Subtropical Design at the Queensland University of Technology is leading Australia in innovative environmental design with a multi-­‐disciplinary focus on creating places that are ‘at home’ in the warm humid subtropics. The Broward Community Design Collaborative at Florida Atlantic University's College for Design and Social Inquiry has built an interdisciplinary collaboration that is unique in the United States among the units of Architecture, Urban and Regional Planning, Social Work, Public Administration, together with the College of Engineering and Computer Science, the College of Science, and the Center for Environmental Studies, to engage in funded action research through design inquiry to solve the problems of development for urban resiliency and environmental sustainment. As we move beyond debates about climate change -­‐ now acting upon us -­‐ the subtropical urban regions of the world will continue to convene to demonstrate the power of local knowledge against global forces, thereby inspiring us as we work toward everyday engagement and action that can make our cities more livable, equitable, and green.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fire safety plays a vital role in building design because appropriate level of fire safety is important to safeguard lives and property. Cold-formed steel channel sections along with fire-resistive plasterboards are used to construct light-gauge steel frame (LSF) floor systems to provide adequate fire resistance ratings (FRR). It is common practice to use lipped channel sections (LCS) as joists in LSF floor systems, and past research has only considered such systems. This research focuses on adopting improved joist sections such as hollow flange channel (HFC) sections to improve the structural performance and FRR of cold-formed LSF floor systems under standard fire conditions. The structural and thermal performances of LSF floor systems made of a welded HFC, LiteSteel Beams (LSB), with different plasterboard and insulation configurations, were investigated using four full-scale fire tests under standard fires. These fire tests showed that the new LSF floor system with LSB joists improved the FRR in comparison to that of conventional LCS joists. Fire tests have provided valuable structural and thermal performance data of tested floor systems that included time-temperature profiles and failure times, temperatures, and modes. This paper presents the details of the fire tests conducted in this study and their results along with some important findings.