947 resultados para Buffaloes - Slaughter
Resumo:
The objectives of this study were to estimate genetic parameters for test-day milk, fat and protein yields, in Murrah buffaloes. In this study 4,757 complete lactations of Murrah buffaloes were analyzed. The (co) variance components were estimated by restricted maximum likelihood using MTDFREML software. The bi-trait animal test-day models included genetic additive direct and permanent environment effects, as random effects, and the fixed effects of contemporary group (herds-year-month of control) and age of the cow at calving as linear and quadratic covariable. The heritability estimate at first control was 0.19, increased until the third control (0.24), decreasing thereafter, reaching the lowest value at the ninth control (0.09). The highest heritability estimates for fat and protein yield were 0.23 (first control) and 0.33 (third control), respectively. For milk yield, genetic and phenotypic correlation estimates ranged from 0.37 to 0.99 and from 0.52 to 0.94, respectively. Genetic correlations were higher than phenotypic ones. For fat and protein yields, genetic correlation estimates ranged from 0.42 to 0.97.
Resumo:
Based on in vitro experiments, Bos indicus embryos were more resistant to heat stress (HS) than Bos taurus embryos. To increase knowledge regarding differences between Bos indicus and Bos taurus in resistance to HS, the primary objective of this study was to determine if tolerance to HS is due to the breed, origin of the oocyte, sperm, or both. Additionally, the influence of the interval between ovary acquisition (in the abattoir) and oocyte aspiration in the laboratory, on early embryo development was ascertained. Oocytes were collected from Nelore and Holstein cows in an abattoir; 4.0 or 6.5 h later, oocytes were aspired in the laboratory, and then matured and fertilized using semen from Nelore (N), Gir (GIR), or Holstein (H) bulls. Ninety-six h post insemination (hpi), embryos with >= 16 cells were divided in two groups: control and HS. In the control group, embryos were cultured at 39 degrees C, whereas in the HS group, embryos were subjected to 41 degrees C for 12 h, and then returned to 39 degrees C. Rates of cleavage, and formation of morula and blastocysts were higher (P < 0.05) for oocytes aspirated at 4.0 versus 6.5 h after ovaries were acquired. Heat stress decreased rates of blastocyst formation for all breeds (N X N; H x H; and H X GIR) and in both time intervals (4.0 and 6.5 h). However, N X N had higher cleavage rate (P < 0.05) in both time intervals when compared with H X H and H X GIR. In addition, Nelore oocytes fertilized with Nelore semen (N X N) had higher blastocyst yields (P < 0.05) in the control and HS group, when compared with the other two breeds (H X H and H X GIR). We concluded that the breed of origin of the oocyte was more important than that of the sperm for development of thermotolerance, because bull breed did not influence embryo development after HS, and in vitro early embryonic development was impaired by increasing (from 4 to 6.5 h) the interval between ovary acquisition and oocyte aspiration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Non-linear mathematical functions proposed by Brody, Gompertz, Richards, Bertalanffy and Verhulst were compared in several buffalo production systems in Colombia. Herds were located in three provinces: Antioquia, Caldas, and Cordoba. Growth was better described by the curves proposed by Brody and Gompertz. Using the datasets from herds from Caldas, heritabilities for traits such as weaning weight (WW), weight and maturity at one year of age (WY and MY, respectively), age at 50% and 75% of maturity (A50% and A75%, respectively), adult weight (beta(0)), and other characteristics, were also estimated. Direct and maternal heritabilities for WW were 0.19 and 0.12, respectively. Direct heritabilities for WY, MY, A50%, A75% and beta(0) were 0.39, 0.15, 0.09, 0.20 and 0.09, respectively. The genetic correlation for beta(0) and WY was -0.47, indicating that selection for heavy weight at one year of age will lead to lower weight at adult age. These data suggest that selection based on maturity traits can generate changes in characteristics of economic importance in beef-type buffalo farms.
Resumo:
Knowledge of genetic parameters is essential for improved reproductive management and increased yield. Quantitative analysis of genetic parameters is lacking for many breeds of buffaloes. This article provides the first estimate of genetic parameters for dual purpose (meat and milk) Brazilian Jaffarabadi buffaloes, using Bayesian inference. Data on milk yield (MY), lactation length (LL), weight at 205 days (W205) and 365 (W365) days of age, and average daily gain (ADG) from 205 to 365 days of age were collected in two herds. Bivariate analyses (using the program MTGSAM) were performed with the Gibbs sampler to obtain estimates of variance and covariance. Average lactation milk yield and lactation length were 1 620.2 +/- 450.9 kg and 257.6 +/- 46.8 days, respectively, and the mean values for weight traits (kg) were 181.6 +/- 63.3 (W205), 298.04 +/- 116.1 (W365), and 0.73 +/- 0.35 (ADG). Heritability estimates (modes) were 0.16 for MY, 0.10 for LL, 0.43 for W205, 0.48 for W365 and 0.32 for ADG. There was a high genetic correlation (0.96) between milk yield and lactation length and very high genetic correlations (0.99) between the three growth traits. Our data suggest that both milk production and growth traits have clear potential for yield improvement through direct selection in this dual purpose breed. The selection for weight at an early age would be successful and selection for MY can be performed in the first lactation.
Resumo:
Data concerning daily milk yield (MY), percentage of milk fat (%F), protein (%P), lactose (%LT), and total solids (%TS), and somatic cell counts (SCC) for a herd of 222 Murrah buffalo reared in the state of São Paulo, Brazil, were collected monthly from 1997 to 2000 in order to study the factors affecting SCC and their relation to milk production and constituents during lactation. SCC decreased in the second month of lactation and increased thereafter, up to the ninth month of lactation. The interaction of month of lactation x order of calving was significant. Mean MY observed during the first month of lactation was 6.87 kg, which increased to 7.65 kg during the second month, and then decreased until the ninth month of lactation (3.83 kg). During the different months of lactation, %F, %P, %LT, and %TS ranged from 6.28 to 8.38%, 4.05 to 4.59%, 4.96 to 5.34%, and 16.94 to 18.55%, respectively. Calving year, calving order, and order of month of lactation significantly affected MY, %F, %P, %LT, and %TS. The regression coefficients of transformed SCC on MY and %LT were negative and significant during all months of lactation, showing that milk and lactose yield decreased with increased transformed SCC, causing losses to buffalo milk producers.
Resumo:
Caseins comprise make up about 80% of the total protein content of milk and present polymorphism with change in the amino acid sequence. Within this abundance of proteins, kappa-casein is noteworthy, since it has been associated with differences in milk yield, composition and processing. The objective of this study was to observe the existence of polymorphism in the kappa-casein gene in female buffaloes. For this purpose, blood samples from 115 female buffaloes, collected with vacutainer by needle punctionure of the jugular vein, were used. for genomic DNA extraction was done from blood samples. The PCR-RFLP and SSCP techniques demonstrated that the studied animals were monomorphic for the kappa-casein gene. Only allele B was observed in these animals, which was present in homozygosis. Therefore, it was not possible to quantify the gene action on milk yield and its constituents. The monomorphism observed in the population studied would allow the development of a method to identify mixtures of cow and buffalo milk in mozzarella cheese production, especially because, in cattle, the kappa-casein gene is polymorphic. Copyright by the Brazilian Society of Genetics.
Resumo:
Non-linear mathematical functions proposed by Brody, Gompertz, Richards, Bertalanffy and Verhulst were compared in several buffalo production systems in Colombia. Herds were located in three provinces: Antioquia, Caldas, and Cordoba. Growth was better described by the curves proposed by Brody and Gompertz. Using the datasets from herds from Caldas, heritabilities for traits such as weaning weight (WW), weight and maturity at one year of age (WY and MY, respectively), age at 50% and 75% of maturity (A50% and A75%, respectively), adult weight (β0), and other characteristics, were also estimated. Direct and maternal heritabilities for WW were 0.19 and 0.12, respectively. Direct heritabilities for WY, MY, A50%, A75% and β0 were 0.39, 0.15, 0.09, 0.20 and 0.09, respectively. The genetic correlation for β0 and WY was -0.47, indicating that selection for heavy weight at one year of age will lead to lower weight at adult age. These data suggest that selection based on maturity traits can generate changes in characteristics of economic importance in beef-type buffalo farms. © 2012 Universidad de Antioquia.
Resumo:
In the present study, data of 1,578 first lactation females, calving from 1985 to 2006 were analysed with the purpose of estimating genetic parameters for milk yield (MY), age at first calving (AFC) and interval between first and second calving (IBFSC) in dairy buffaloes of the Murrah breed in Brazil, Heritability estimates for MY, AFC and IBFSC traits were 0.20, 0.07 and 0.14, respectively. Genetic correlations between MY and AFC and IBFSC were -0.12 and 0.07, respectively, while the corresponding phenotypic correlations were -0.15 and 0.30, respectively. Genetic and phenotypic correlations between AFC and IBFSC were 0.35 and 0.37, respectively. Genetic correlation between MY and AFC showed desirable negative association, suggesting that daughters of the bulls with high breeding values for MY could reach physiological mature at a precocious age. Genetic correlation between MY and IBFSC, showed that the selection for milk production could result in the increase of calving intervals.
Resumo:
The test-day model is the preferred method for genetic evaluations in dairy cattle. For this study, 28372 test-day records of 1220 lactations from 1997 to 2009 were used. The (co)variance components for milk in test-day were estimated using a Uni and multiple-traits repeated animal model with the Restricted Maximum Likelihood method (REML). The Contemporary Group (herd, year, and season of parity) and the age of parity (linear and quadratic) fixed effects, and the additive genetic, permanent environmental, and residual random effects were included in the model. The heritabilities ranged between 0.06 and 0.45 during lactation. The genetic correlations were greater than 0.93. In conclusion, the test-day model is appropriate for the genetic evaluation of dairy buffaloes in Colombia.
Resumo:
The objective of this study was to evaluate the influence of inbreeding depression on traits of buffaloes from Brazil. Specifically, the traits studied were body weight at 205 and 365 days of age, average daily gain from birth to 205 days (ADG_205), average daily gain between 205 and 365 days (ADG205_365) in Mediterranean buffaloes, and milk yield, lactation length, age of first calving and calving intervals in Murrah buffaloes. Inbreeding effects on the traits were determined by fitting four regression models (linear, quadratic, exponential and Michaelis-Menten) about the errors generated by the animal model. The linear model was only significant (P<0.05) for growth traits (exception of ADG205_365). The exponential and Michaelis-Menten models were significant (P<0.01) for all the studied traits while the quadratic model was not significant (P>0.05) for any of the traits. Weight at 205 and 365 days of age decreased 0.25kg and 0.39kg per 1% of increase in inbreeding, respectively. The inbred animals (F=0.25) produced less milk than non-inbred individuals: 50.4kg of milk. Moreover, calving interval increased 0.164 days per 1% of increase in inbreeding. Interestingly, inbreeding had a positive effect on age at first calving and lactation length, decreasing age of first calving and increasing lactation length. © 2012 Japanese Society of Animal Science.
Resumo:
Ghrelin is a gastrointestinal hormone that acts in releasing growth hormone and influences the body general metabolism. It has been proposed as a candidate gene for traits such as growth, carcass quality, and milk production of livestock because it influences feed intake. In this context, the aim of this study was to verify the existence of polymorphisms in the ghrelin gene and their associations with milk, fat and protein yield, and percentage in water buffaloes (Bubalus bubalis). A group of 240 animals was studied. Five primer pairs were used and 11 single nucleotide polymorphisms (SNP) were found in the ghrelin gene by sequencing. The animals were genotyped for 8 SNP by PCR-RFLP. The SNP g.960G>A and g.778C>T were associated with fat yield and the SNP g.905T>C was associated with fat yield and percentage and protein percentage. These SNP are located in intronic regions of DNA and may be in noncoding RNA sites or affect transcriptional efciency. The ghrelin gene in buffaloes influences milk fat and protein synthesis. The polymorphisms observed can be used as molecular markers to assist selection. © 2013 American Dairy Science Association.
Resumo:
The Brazilian Ministry of Agriculture (MAPA) regulations establish 12 hours as the maximum pre-slaughter fasting period for broilers; however, many processing plants have considered this time is not sufficient, and consequently return the birds to the farms, with consequent economic losses and welfare problems. Therefore, it is necessary to investigate the possible effects of longer pre-slaughter fasting times. The objective of the present study was to evaluate the effect of pre-slaughter fasting times longer than those established by MAPA on broiler welfare, breast meat quality, and intestinal integrity. Forty 42-d-old broilers were submitted to different pre-slaughter fasting times: group I: 6 hours, group II 9h, group III 12h, and group IV 15h. Bird welfare was assessed before slaughter. After sacrifice, intestinal samples were collected to assess their morphology and morphometrics, and the Pectoralis major muscle was analyzed for pH and color. There was no influence (p>0.05) of treatments on breast muscle pH or color.There were no significant changes in intestinal morphometrics (p<0.05). Bird behavior was affected (p<0.05), suggesting that welfare was impaired as fasting time increased, but no differences in the analyzed parameters were detected between broilers fasted for 12 or 15 hours. It was concluded that the behavioral differences between birds fasted for 12 and 15 hours are not sufficient to assert that those fasted for 15 hours were in worse welfare conditions.
Resumo:
The gene responsible for coding the leptin hormone has been associated with productive and reproductive traits in cattle. In dairy cattle, different polymorphisms found in the leptin gene have been associated with several traits of economic interest, such as energy balance, milk yield and composition, live weight, fertility and dry matter consumption. The aim of this study was to detect genetic variability in the leptin gene of buffaloes and to test possible associations with milk yield, fat and protein percentages, age at first calving and first calving interval. Three genotypes (AA, AG and GG) were identified by polymerase chain reaction-restriction fragment length polymorphism, which presented genotypic frequencies of 0.30, 0.54 and 0.16, respectively. The allele frequencies were 0.57 for the A allele and 0.43 for the G allele. No significant effects were found in the present study, but there is an indicative that leptin gene affects lipid metabolism. © 2013 Springer Science+Business Media Dordrecht.