349 resultados para Broadnose sevengill sharks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Location or stock-specific landing data are necessary to improve management of shark stocks, especially those imperiled by overexploitation as a result of the international shark fin trade. In the current absence of catch monitoring directly at extraction sites, genetic stock identification of fins collected from major market supply chain endpoints offers an overlooked but potentially useful approach for tracing the fins back to their geographical, or stock of, origin. To demonstrate the feasibility of this approach, we used mitochondrial control region (mtCR) sequences to trace the broad geographical origin of 62 Hong Kong market-derived Sphyrna lewini fins. Of these fins 21% were derived from the western Atlantic, where this species is listed as 'Endangered' by the International Union for the Conservation of Nature (IUCN). We also show that S. lewini mtCR sequences are geographically segregated in the western Atlantic (overall ΦST = 0.74, n = 177 sharks), indicating that breeding females either remain close to, or home back to, their natal region for parturition. Mixed stock analysis simulations showed that it is possible to estimate the relative contributions of these mitochondrial stocks to fin mixtures in globally sourced trade hubs. These findings underscore the feasibility of using genetic stock identification to source market-derived shark fins to obtain essential and otherwise unavailable data on exploitation levels, and thus to productively inform stock assessment and management of S. lewini and potentially also of other fished shark species. © Inter-Research 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing decline in abundance and diversity of shark stocks, primarily due to uncontrolled fishery exploitation, is a worldwide problem. An additional problem for the development of conservation and management programmes is the identification of species diversity within a given area, given the morphological similarities among shark species, and the typical disembarkation of processed carcasses which are almost impossible to differentiate. The main aim of the present study was to identify those shark species being exploited off northern Brazil, by using the 12S-16S molecular marker. For this, DNA sequences were obtained from 122 specimens collected on the docks and the fish market in Bragança, in the Brazilian state of Pará. We identified at least 11 species. Three-quarters of the specimens collected were either Carcharhinus porosus or Rhizoprionodon sp, while a notable absence was the daggernose shark, Isogomphodon oxyrhyncus, previously one of the most common species in local catches. The study emphasises the value of molecular techniques for the identification of cryptic shark species, and the potential of the 12S-16S marker as a tool for phylogenetic inferences in a study of elasmobranchs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two defensive tactics of neonates of nurse sharks, Ginglymostoma cirratum, are reported based on underwater observations. Described as "hiding behaviour" and "substrate resemblance", the defensive strategies were categorized according to the predominant habitat in which the individuals were found and to the behaviour displayed by the sharks in the presence of the observer. In structurally more complex habitats with a wide availability of shelters, the preferential behaviour displayed by neonates is to hide inside holes or crevices. When in open areas deprived of refuges, neonates tend to resemble arborescent coverings as seaweed banks or colonies of octocorals, which allows the use of more exposed habitats without increasing the susceptibility of capture by predators. Both aspects are relevant for a better understanding of the behaviour of neonates of G. cirratum and have important implications for identifying important habitat in nursery areas, and also for the management of this vulnerable species off South America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elasmobranchs are an important by-catch of commercial fisheries targeting bony fishes. Fisheries targeting sharks are rare, but usually almost all specimen bycatched are marketed. They risk extinction if current fishing pressure continues (Ferretti et al., 2008). Accurate species identification is critical for the design of sustainable fisheries and appropriate management plans, especially since not all species are equally sensitive to fishing pressure (Walker & Hislop 1998). The identification of species constitutes the first basic step for biodiversity monitoring and conservation (Dayrat B et al., 2005). More recently, mtDNA sequencing has also been used for species identification and its use has become widespread under the DNA Barcode initiative (e.g. Hebert et al. 2003a, 2003b; Ward et al. 2005, 2008a; Moura et al 2008; Steinke et al. 2009). The aims of this work were: 1) identify sharks and skates species using DNA barcode; 2) compare species of different provenance; 3) use DNA barcode for misidentified species. Using DNA barcode 15 species of sharks (Alopias vulpinus, Centrophorus granulosus, Cetorhinus maximus, Dalatias licha, Etmopterus spinax, Galeorhinus galeus, Galeus melastomus, Heptranchias perlo, Hexanchus griseus, Mustelus mustelus, Mustelus punctulatus, Oxynotus centrina, Scyliorhinus canicula Squalus acanthias, Squalus blainville), 1 species of chimaera (Chimaera monstrosa) and 21 species of rays/skayes (Dasyatis centroura, Dasyatis pastinaca, Dasyatis sp., Dipturus nidarosiensis, Dipturus oxyrinchus, Leucoraja circularis, Leucoraja melitensis, Myliobatis aquila, Pteromylaeus bovinus, Pteroplatytrygon violacea, Raja asterias, Raja brachyura, Raja clavata, Raja miraletus, Raja montagui, Raja radula, Raja polystigma, Raja undulata, Rostroraja alba, Torpedo marmorata, Torpedo nobiliana, Torpedo torpedo) was identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study poses as its objective the genetic characterization of the ancient population of the Great White shark, Carcharodon carcharias, L.1758, present in the Mediterranean Sea. Using historical evidence, for the most part buccal arches but also whole, stuffed examples from various national museums, research institutes and private collections, a dataset of 18 examples coming from the Mediterranean Sea has been created, in order to increase the informations regarding this species in the Mediterranean. The importance of the Mediterranean provenance derives from the fact that a genetic characterization of this species' population does not exist, and this creates gaps in the knowledge of this species in the Mediterranean. The genetic characterization of the individuals will initially take place by the extraction of the ancient DNA and the analysis of the variations in the sequence markers of the mitochondrial DNA. This approach has allowed the genetic comparison between ancient populations of the Mediterranean and contemporary populations of the same geographical area. In addition, the genetic characterization of the population of white sharks of the Mediterranean, has allowed a genetic comparison with populations from global "hot spots", using published sequences in online databases (NCBI, GenBank). Analyzing the variability of the dataset, both in terms space and time, I assessed the evolutionary relationships of the Mediterranean population of Great Whites with the global populations (Australia/New Zealand, South Africa, Pacific USA, West Atlantic), and the temporal trend of the Mediterranean population variability. This method based on the sequencing of two portions of mitochondrial DNA genes, markers showed us how the population of Great White Sharks in the Mediterranean, is genetically more similar to the populations of the Australia Pacific ocean, American Pacific Ocean, rather than the population of South Africa, and showing also how the population of South Africa is abnormally distant from all other clusters. Interestingly, these results are inconsistent with the results from tagging of this species. In addition, there is evidence of differences between the ancient population of the Mediterranean with the modern one. This differentiation between the ancient and modern population of white shark can be the result of events impacting on this species occurred over the last two centuries.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scuticociliatosis is an economically important, frequently fatal disease of marine fish in aquaculture, caused by histophagous ciliated protozoa in the subclass Scuticociliatida of the phylum Ciliophora. A rapidly lethal systemic scuticociliate infection is described that affected aquarium-captive zebra sharks (Stegostoma fasciatum), Port Jackson sharks (Heterodontus portusjacksoni), and a Japanese horn shark (Heterodontus japonicus). Animals died unexpectedly or after a brief period of lethargy or behavioral abnormality. Gross findings included necrohemorrhagic hepatitis and increased volumes of celomic fluid. Histologically, 1 or more of a triad of necrotizing hepatitis, necrotizing meningoencephalitis, and thrombosing branchitis were seen in all cases, with necrotizing vasculitis or intravascular fibrinocellular thrombi. Lesions contained variably abundant invading ciliated protozoa. Molecular identification by polymerase chain reaction from formalin-fixed tissues identified these as the scuticociliate Philasterides dicentrarchi (syn. Miamiensis avidus), a novel and potentially emergent pathogen in sharks.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harbour seals in Svalbard have short longevity, despite being protected from human hunting and having limited terrestrial predation at their haulout sites, low contaminant burdens and no fishery by-catch issues. This led us to explore the diet of Greenland sharks (Somniosus microcephalus) in this region as a potential seal predator. We examined gastrointestinal tracts (GITs) from 45 Greenland sharks in this study. These sharks ranged from 229 to 381 cm in fork length and 136-700 kg in body mass; all were sexually immature. Seal and whale tissues were found in 36.4 and 18.2%, respectively, of the GITs that had contents (n = 33). Based on genetic analyses, the dominant seal prey species was the ringed seal (Pusa hispida); bearded seal (Erignathus barbatus) and hooded seal (Cystophora cristata) tissues were each found in a single shark. The sharks had eaten ringed seal pups and adults based on the presence of lanugo-covered prey (pups) and age determinations based on growth rings on claws (<1 year and adults). All of the whale tissue was from minke whale (Balenoptera acutorostrata) offal, from animals that had been harvested in the whale fishery near Svalbard. Fish dominated the sharks' diet, with Atlantic cod (Gadus morhua), Atlantic wolffish (Anarhichas lupus) and haddock (Melanogrammus aeglefinus) being the most important fish species. Circumstantial evidence suggests that these sharks actively prey on seals and fishes, in addition to eating carrion such as the whale tissue. Our study suggests that Greenland sharks may play a significant predatory role in Arctic food webs.