931 resultados para Broadband microstrip antenna
Resumo:
The design of a dual-band 2.45/5.2 GHz antenna for an access point of a wireless local area network (WLAN) is presented. The proposed antenna is formed by an assembly of a radial line slot array (RLSA) operating at 2.4 GHz and a microstrip patch working at 5.2 GHz. The design of this antenna system is accomplished using commercially available finite element software, high frequency structure simulator (HFSS), of Ansoft. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two investigated frequency bands.
Resumo:
With the increase in traffic on the internet, there is a greater demand for wireless mobile and ubiquitous applications. These applications need antennas that are not only broadband, but can also work in different frequency spectrums. Even though there is a greater demand for such applications, it is still imperative to conserve power. Thus, there is a need to design multi-broadband antennas that do not use a lot of power. Reconfigurable antennas can work in different frequency spectrums as well as conserve power. The current designs of reconfigurable antennas work only in one band. There is a need to design reconfigurable antennas that work in different frequency spectrums. In this current era of high power consumption there is also a greater demand for wireless powering. This dissertation explores ideal designs of reconfigurable antennas that can improve performance and enable wireless powering. This dissertation also presents lab results of the multi-broadband reconfigurable antenna that was created. A detailed mathematical analyses, as well as extensive simulation results are also presented. The novel reconfigurable antenna designs can be extended to Multiple Input Multiple Output (MIMO) environments and military applications.^
Resumo:
With the increase in traffic on the internet, there is a greater demand for wireless mobile and ubiquitous applications. These applications need antennas that are not only broadband, but can also work in different frequency spectrums. Even though there is a greater demand for such applications, it is still imperative to conserve power. Thus, there is a need to design multi-broadband antennas that do not use a lot of power. Reconfigurable antennas can work in different frequency spectrums as well as conserve power. The current designs of reconfigurable antennas work only in one band. There is a need to design reconfigurable antennas that work in different frequency spectrums. In this current era of high power consumption there is also a greater demand for wireless powering. This dissertation explores ideal designs of reconfigurable antennas that can improve performance and enable wireless powering. This dissertation also presents lab results of the multi-broadband reconfigurable antenna that was created. A detailed mathematical analyses, as well as extensive simulation results are also presented. The novel reconfigurable antenna designs can be extended to Multiple Input Multiple Output (MIMO) environments and military applications.
Resumo:
[ES]El objetivo final del trabajo fin de grado, que se expone en este documento, trata sobre el diseño de un array de antena de microstrip, con la intención de que se utilice para aplicaciones de comunicación entre vehículos que trabajen en la banda de los 5 GHz, bajo el estándar ITS-G5/IEEE 802.11p, además de su fabricación y medición posterior para poder compararlos con las simulaciones. Se buscará que la ganancia de la antena sea la máxima posible pero tratando de conseguir a su vez el mayor ancho de banda dentro del rango de frecuencias requerido. Para el diseño se partirá de un único parche y se le irán añadiendo los demás componentes progresivamente (reflectores, desfasadores, mayor número de parches, transformadores λ/4, etc.) y se irán estudiando sus simulaciones. Todas estas simulaciones se realizarán con el programa HFSS.
Resumo:
Photonic band-gap (PBG) structures are utilized in microwave components as filters to suppress unwanted signals. In this work, rectangular perforations were created in the ground plane of a microstrip line to construct a PBG structure. A gold-coated alumina substrate was utilized to switch or tune the bandstop characteristics of this structure. It was demonstrated that the bandstop characteristics were switched off from - 35 to - 1 dB at 16 GHz. Tuning of the bandstop edge with a shift of 1.5 GHz was also shown
Resumo:
The closed form expression for the radiated power of a half-wave microstrip patch is modified to calculate the impedance bandwidth of a printed dipole. Analyses of cavity backed flared and end-loaded printed dipoles are presented
Resumo:
The practical applications of microstrip antennas for mobile systems are in portable or pocket-size equipment and in vehicles. Antennas for VHFIUHF handheld portable equipment, such as pagers, portable telephones and transceivers, must naturally be small in size, light in weight and compact in structure. There is a growing tendency for portable equipment to be made smaller and smaller as the demand for personal communication rapidly increases, and the development of very compact hand-held units has become urgent.In this thesis work, main aim is to develop a more and more reduced sized microstrip patch antenna. It is well known that the smaller the antenna size, the lower the antenna efficiency. During the period of work, three different compact circular sided microstrip patches are developed and analysed, which have a significant size reduction compared to standard circular disk antenna (the most compact one of the basic microstrip patch configurations), without much deterioration of its properties like gain, bandwidth and efficiency. In addition to this the interesting results, dual port operation and circular polarization are also observed for some typical designs of these patches. These make the patches suitable for satellite and mobile communication systems.The theoretical investigations are carried out on these compact patches. The empirical relations are developed by modifying the standard equations of rectangular and circular disk microstrip patches, which helps to predict the resonant frequencies easily.
Resumo:
This work presents a study of implementation procedures for multiband microstrip patch antennas characterization, using on wireless communication systems. An artificial neural network multilayer perceptron is used to locate the bands of operational frequencies of the antenna for different geometrics configurations. The antenna is projected, simulated and tested in laboratory. The results obtained are compared in order to validate the performance of archetypes that resulted in a good one agreement in metric terms. The neurocomputationals procedures developed can be extended to other electromagnetic structures of wireless communications systems
Resumo:
This work presents a theoretical, numerical and computation analysis of parameters of a rectangular microstrip antenna with metamaterial substrate, fin line as a coupler and also integrated devices like integrated filter antenna. It is applied theory to full-wave of Transverse Transmission Line - TTL method, to characterize the magnitude of the substrate and obtain the general equations of the electromagnetic fields. About the metamaterial, they are characterized by permittivity and permeability tensor, reaching to the general equations for the electromagnetic fields of the antenna. It is presented a study about main representation of PBG(Photonic Band Gap) material and its applied for a specific configuration. A few parameters are simulated some structures in order to reduce the physical dimensions and increase the bandwidth. The results are presented through graphs. The theoretical and computational analysis of this work have shown accurate and relatively concise. Conclusions are drawn and suggestions for future work
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented
Resumo:
This paper presents a theoretical and numerical analysis of the parameters of a rectangular microstrip antenna with metamaterial substrate. The metamaterial (MTM) theory was applied along with Transverse Transmission Line (LTT) method to characterize substrate quantities and obtain the general equations of the electromagnetic fields. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. Electromagnetic principes are used to obtained parameters such as complex resonance frequency, bandwidth and radiation pattern were then obtained. Different metamaterial and antenna configurations were simulated to miniaturize them physically and increase their bandwidth, the results of which are shown through graphics. The theoretical computational analysis of this work proved to be accurate when compared to other studies, and may be used for other metamaterial devices. Conclusions and suggestions for future work are also proposed
Resumo:
This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented
Resumo:
Metamaterials have attracted a great attention in recent years mostly due to their electromagnetic properties not found in nature. Since metamaterials began to be synthesized by the insertion of artificially manufactured inclusions in a medium specified host , it provides the researcher a broad collection of independent parameters such as the electromagnetic properties of the material host. In this work was presents an investigation of the unique properties of Split Ring Resonators and compounds metamaterials was performed. We presents a theoretical and numerical analysis , using the full-wave formalism by applying the Transverse Transmission Line - LTT method for the radiation characteristics of a rectangular microstrip antenna using metamaterial substrate, as is successfully demonstrated the practical use of these structures in antennas. We experimentally confirmed that composite metamaterial can improved the performance of the structures considered in this thesis
Resumo:
This work aims to show how the application of frequency selective surfaces (FSS) in planar antenna arrays become an alternative to obtain desired radiation characteristics from changes in radiation parameters of the arrays, such as bandwidth, gain and directivity. In addition to analyzing these parameters is also made a study of the mutual coupling between the elements of the array. To accomplish this study, were designed a microstrip antenna array with two patch elements, fed by a network feed. Another change made in the array was the use of the truncated ground plane, with the objective of increasing the bandwidth and miniaturize the elements of the array. In order to study the behavior of frequency selective surfaces applied in antenna arrays, three different layouts were proposed. The first layout uses the FSS as a superstrate (above the array). The second layout uses the FSS as reflector element (below the array). The third layout is placed between two FSS. Numerical and experimental results for each of the proposed configurations are presented in order to validate the research