930 resultados para Bridges Vibration Mathematical models
Resumo:
Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.
Resumo:
In São Paulo State, mainly in rural areas, the utilization of wooden poles is observed for different purposes. In this context, wood in contact with the ground presents faster deterioration, which is generally associated to environmental factors and, especially to the presence of fungi and insects. With the use of mathematical models, the useful life of wooden structures can be predicted by obtaining "climatic indexes" to indicate, comparatively among the areas studied, which have more or less tendency to fungi and insects attacks. In this work, by using climatological data of several cities at São Paulo State, a simplified mathematical model was obtained to measure the aggressiveness of the wood in contact with the soil.
Resumo:
The broiler rectal temperature (t rectal) is one of the most important physiological responses to classify the animal thermal comfort. Therefore, the aim of this study was to adjust regression models in order to predict the rectal temperature (t rectal) of broiler chickens under different thermal conditions based on age (A) and a meteorological variable (air temperature - t air) or a thermal comfort index (temperature and humidity index -THI or black globe humidity index - BGHI) or a physical quantity enthalpy (H). In addition, through the inversion of these models and the expected t rectal intervals for each age, the comfort limits of t air, THI, BGHI and H for the chicks in the heating phase were determined, aiding in the validation of the equations and the preliminary limits for H. The experimental data used to adjust the mathematical models were collected in two commercial poultry farms, with Cobb chicks, from 1 to 14 days of age. It was possible to predict the t rectal of conditions from the expected t rectal and determine the lower and superior comfort thresholds of broilers satisfactorily by applying the four models adjusted; as well as to invert the models for prediction of the environmental H for the chicks first 14 days of life.
Resumo:
The draft forces of soil engaging tines and theoretical analysis compared to existing mathematical models, have yet not been studied in Rio Grande do Sul soils. From the existing models, those which can get the closest fitting draft forces to real measure on field have been established for two of Rio Grande do Sul soils. An Albaqualf and a Paleudult were evaluated. From the studied models, those suggested by Reece, so called "Universal Earthmoving Equation", Hettiaratchi and Reece, and Godwin and Spoor were the best fitting ones, comparing the calculated results with those measured "in situ". Allowing for the less complexity of Reece's model, it is suggested that this model should be used for modeling draft forces prediction for narrow tines in Albaqualf and Paleudut.
Resumo:
This study aimed to apply mathematical models to the growth of Nile tilapia (Oreochromis niloticus) reared in net cages in the lower São Francisco basin and choose the model(s) that best represents the conditions of rearing for the region. Nonlinear models of Brody, Bertalanffy, Logistic, Gompertz, and Richards were tested. The models were adjusted to the series of weight for age according to the methods of Gauss, Newton, Gradiente and Marquardt. It was used the procedure "NLIN" of the System SAS® (2003) to obtain estimates of the parameters from the available data. The best adjustment of the data were performed by the Bertalanffy, Gompertz and Logistic models which are equivalent to explain the growth of the animals up to 270 days of rearing. From the commercial point of view, it is recommended that commercialization of tilapia from at least 600 g, which is estimated in the Bertalanffy, Gompertz and Logistic models for creating over 183, 181 and 184 days, and up to 1 Kg of mass , it is suggested the suspension of the rearing up to 244, 244 and 243 days, respectively.
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.
Resumo:
The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.
Resumo:
Although exceptions may be readily identified, two generalizations concerning genetic differences among species may be drawn from the available allozyme and chromosome data. First, structural gene differences among species vary widely. In many cases, species pairs do not differ more than intraspecific populations. This suggests that either very few or no gene substitutions are required to produce barriers to reproduction (Avise 1976). Second, chromosome form and/or number differs among even closely related species (White 1963; 1978; Fredga 1977; Wright 1970). Many of the observed chromosomal differences involve translocational rearrangements; these produce severe fitness depression in heterozygotes and were, thus, long considered unlikely candidates for the fixation required of genetic changes leading to speciation (Wright 1977). Nonetheless, the fact that species differences are frequently translocational argues convincingly for their fixation despite prejudices to the contrary. Haldane's rule states that in the F of interspecific crosses, the heterogametic sex is absent or sterile in the preponderance of cases (Haldane 1932). This rule definitely applies in the genus Dr°sophila (Ehrman 1962). Sex chromosome translocations do not impose a fitness depression as severe as that imposed by autosomal translocations, and X-Y translocations may account for Haldane's rule (Haldane 1932). Consequently a study of the fit ness parameters of an X·yL and a yS chromosome in Drosophila melanogaster populations was initiated by Tracey (1972). Preliminary results suggested that x.yL//YSmales enjoyed a mating advantage with X·yL//X·yL females, that this advantage was frequency dependent, that the translocation produced sexual isolation and that interactions between the yL, yS and a yellow marker contributed to the observed isolation (Tracey and Espinet 1976; Espinet and Tracey 1976). Encouraged by the results of these prelimimary studies, further experiments were performed to clarify the genetic nature of the observed sexual isolation, S the reality of the y frequency dependent fitness .and the behavioural changes, if any, produced by the translocation. The results of this work are reported herein. Although the marker genes used in earlier studies, sparkling poliert an d yellow have both been found to affect activity,but only yellow effects asymmetric sexual isolation. In addition yellow effects isolation through an interaction with the T(X-y) chromosomes, yS also effects isolation, and translocational strains are isolated from those of normal karyotype in the absence of marker gene differences. When yS chromosomes are in competition with y chromosomes on an X.yL background, yS males are at a distinct advantage only when their frequency is less than 97%. The sex chromosome translocation alters the normal courtship pattern by the incorporation of circling between vibration and licking in the male repertoire. Finally a model of speciation base on the fixation of this sex chromosome translocation in a geographically isolated gene pool is proposed.
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller-Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.
Resumo:
Mathematical models devoted to different aspects of building studies and brought about a significant shift in the way we view buildings. From this background a new definition of building has emerged known as intelligent building that requires integration of a variety of computer-based complex systems. Research relevant to intelligent continues to grow at a much faster pace. This paper is a review of different mathematical models described in literature, which make use of different mathematical methodologies, and are intended for intelligent building studies without complex mathematical details. Models are discussed under a wide classification. Mathematical abstract level of the applied models is detailed and integrated with its literature. The goal of this paper is to present a comprehensive account of the achievements and status of mathematical models in intelligent building research. and to suggest future directions in models.
Resumo:
The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.