650 resultados para Brains.
Resumo:
In spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies. The Brain Bank of the Brazilian Aging Brain Research Group (BBBABSG) of the University of Sao Paulo Medical School (USPMS) collaborates with researchers interested in neuroimaging-neuropathological correlation studies providing brains submitted to postmortem MRI in-situ. In this paper we describe and discuss the parameters established by the BBBABSG to select and to handle brains for fine-scale neuroimaging-neuropathological correlation studies, and to exclude inappropriate/unsuitable autopsy brains. We tried to assess the impact of the postmortem time and storage of the corpse on the quality of the MRI scans and to establish fixation protocols that are the most appropriate to these correlation studies. After investigation of a total of 36 brains, postmortem interval and low body temperature proved to be the main factors determining the quality of routine MRI protocols. Perfusion fixation of the brains after autopsy by mannitol 20% followed by formalin 20% was the best method for preserving the original brain shape and volume, and for allowing further routine and immunohistochemical staining. Taken to together, these parameters offer a methodological progress in screening and processing of human postmortem tissue in order to guarantee high quality material for unbiased correlation studies and to avoid expenditures by post-imaging analyses and histological processing of brain tissue.
Resumo:
This paper analyzes the astroglial and neuronal responses in subtelencephalic structures, following a bilateral ablation of the telencephalon in the Columba livia pigeons. Control birds received a sham operation. Four months later the birds were sacrificed and their brains processed for glial fribillary acid protein (GFAP) and neurofilament immunohistochemistry, markers for astrocytes and neurons, respectively. Computer-assisted image analysis was employed for quantification of the immunoreactive labeling in the nucleus rotundus (N.Rt) and the optic tectum (OT) of the birds. An increased number of GFAP immunoreactive astrocytes were found in several subregions of the N.Rt (p .001), as well as in layers 1, 2cd, 3, and 6 of the OT (p .001) of the lesioned animals. Neurofilament immunoreactivity decreased massively in the entire N.Rt of the lesioned birds; however, remaining neurons with healthy aspect showing large cytoplasm and ramified branches were detected mainly in the periphery of the nucleus. In view of the recently described paracrine neurotrophic properties of the activated astrocytes, the data of the present study may suggest a long-lasting neuroglial interaction in regions of the lesioned bird brain far from injury. Such events may trigger neuronal plasticity in remaining brain structures that may lead spontaneous behavior recovery as the one promoted here even after a massive injury.
Resumo:
Objetive: To evaluate the effects of conjugated equine estrogens (CEE) on the pilocarpine-induced epilepsy in rats. Study design: 40 female rats were divided into: GPC (positive control) presented ""status epilepticus"" (SE) induced by pilocarpine; GOC(ovariectomized control) only castrated; GNC (negative control) received only saline solution; GPE received pilocarpine, presented SE, castrated and received 50 mu g/kg CEE treatment; GPV received pilocarpine, castrated and received propylene glycol (vehicle). The animals were monitored by a video system. At the end of observation, the brains removed for later histologic analysis using Neo-Timm and Nissl methods. Results: The GPE presented a reduction in number of seizures compared to GPV. The Neo-Timm analysis showed that GPV had greater sprouting of mossy fibers, with a denser band in the area of the dentate gyrus hilum compared to GPE. On Nissl staining, GPE showed evident neuronal loss in the CA3 area. GPV presented loss in CA1 and dentate gyrus. Conclusion: Estrogen may have a protecting effect on the central nervous system. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Recent findings showing significant correlations between phospholipase A2 (PLA2) activity and structural changes in schizophrenic brains contribute to the membrane hypothesis of schizophrenia, which was hampered because a clean functional link between elevated PLA2 activity and brain structure was missing (Neuroimage, 2010; 52: 1314-1327). We measured membrane fluidity parameters and found that brain membranes isolated from the prefrontal cortex of schizophrenic patients showed significantly increased flexibility of fatty acid chains. Our findings support a possible link between elevated PLA2 activity in cortical areas of schizophrenic patients and subsequent alterations of the biophysical parameters of neuronal membranes leading to structural changes in these areas.
Resumo:
Structural magnetic resonance imaging and postmortem studies showed volume loss in the hippocampus in schizophrenia. The noted tissue reduction in the posterior section suggests that some cellular subfractions within this structure might be reduced in schizophrenia. To address this, we investigated numbers and densities of neurons, oligodendrocytes and astrocytes in the posterior hippocampal subregions in postmortem brains from ten patients with schizophrenia and ten matched controls using design-based stereology performed on Nissl-stained sections. Compared to the controls, the patients with schizophrenia showed a significant decrease in the mean number of oligodendrocytes in the left and right CA4. This is the first finding of reduced numbers of oligodendrocytes in CA4 of the posterior part of the hippocampus in schizophrenia. Our results are in line with earlier findings in the literature concerning decreased numbers of oligodendrocytes in the prefrontal cortex in schizophrenia. Our results may indicate disturbed connectivity of the CA4 of the posterior part of the hippocampus in schizophrenia and, thus, contribute to the growing number of studies showing the involvement of posterior hippocampal pathology in the pathophysiology of schizophrenia.
Resumo:
Objective: The purpose of this study was to investigate regional structural abnormalities in the brains of five patients with refractory obsessive-compulsive disorder (OCD) submitted to gamma ventral capsulotomy. Methods: We acquired morphometric magnetic resonance imaging (MRI) data before and after 1 year of radiosurgery using a 1.5-T MRI scanner. Images were spatially normalized and segmented using optimized voxel-based morphometry (VBM) methods. Voxelwise statistical comparisons between pre- and post-surgery MRI scans were performed using a general linear model. Findings in regions predicted a priori to show volumetric changes (orbitofrontal cortex, anterior cingulate gyrus, basal ganglia and thalamus) were reported as significant if surpassing a statistical threshold of p<0.001 (uncorrected for multiple comparisons). Results: We detected a significant regional postoperative increase in gray matter volume in the right inferior frontal gyri (Brodmann area 47, BA47) when comparing all patients pre and postoperatively. Conclusions: Our results support the current theory of frontal-striatal-thalamic-cortical (FSTC) circuitry involvement in OCD pathogenesis. Gamma ventral capsulotomy is associated with neurobiological changes in the inferior orbitofrontal cortex in refractory OCD patients. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Phospholipases A(2) (PLA(2)) are ubiquitous enzymes involved in membrane fatty acid metabolism and intracellular signalling. Recent studies have shown that PLA(2) subtypes are implicated in the modulation of pathways related to memory acquisition and retrieval. We investigated the effects of cognitive training on platelet PLA(2) activity in healthy elderly individuals. Twenty-three cognitively unimpaired older adults were randomly assigned to receive memory training or standard outpatient care only. Both groups were cognitively assessed by the same protocol, and the experimental group (EG) underwent a four-session memory training intervention. Pre- and post-test measures included prose and list recall, WAIS-III digit symbol, strategy use measures and platelet PLA(2) group activity. After cognitive training, patients in the EG group had significant increase in cytosolic, calcium-dependent PLA(2) (cPLA(2)), extracellular (or secreted), calcium-dependent PLA(2) (sPLA(2)), total platelet PLA(2) activity, and significant decrease in platelet calcium-independent PLA(2) (iPLA(2)) activity. Our results suggest that memory training may have a modulating effect in PLA(2)-mediated biological systems associated with cognitive functions and neurodegenerative diseases. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.
Resumo:
BACKGROUND AND PURPOSE: Several morphometric MR imaging studies have investigated age- and sex-related cerebral volume changes in healthy human brains, most often by using samples spanning several decades of life and linear correlation methods. This study aimed to map the normal pattern of regional age-related volumetric reductions specifically in the elderly population. MATERIALS AND METHODS: One hundred thirty-two eligible individuals (67-75 years of age) were selected from a community-based sample recruited for the Sao Paulo Ageing and Health (SPAH) study, and a cross-sectional MR imaging investigation was performed concurrently with the second SPAH wave. We used voxel-based morphometry (VBM) to conduct a voxelwise search for significant linear correlations between gray matter (GM) volumes and age. In addition, region-of-interest masks were used to investigate whether the relationship between regional GM (rGM) volumes and age would be best predicted by a nonlinear model. RESULTS: VBM and region-of-interest analyses revealed selective foci of accelerated rGM loss exclusively in men, involving the temporal neocortex, prefrontal cortex, and medial temporal region. The only structure in which GM volumetric changes were best predicted by a nonlinear model was the left parahippocampal gyrus. CONCLUSIONS: The variable patterns of age-related GM loss across separate neocortical and temporolimbic regions highlight the complexity of degenerative processes that affect the healthy human brain across the life span. The detection of age-related Ill GM decrease in men supports the view that atrophy in such regions should be seen as compatible with normal aging.
Resumo:
The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
BACKGROUND: One of the key elements for a successful endoscopic intervention in the ventricular system is the ability to recognize the anatomic structures and use them as a reference. OBJECTIVE: To measure the choroid plexus with endoscopy in the interventricular foramen, together with the structures on the third ventricle floor, and to compare these variables. METHODS: An observational prospective study was carried out on 37 brains of cadavers for which the cause of death was assessed at the Death Check Unit of the University of Sao Paulo in April 2008. This study was done on adults of both sexes with a rigid neuroendoscope. Endoscopic images were recorded, submitted for correction of distortion, and then measured. RESULTS: The measurements of the choroid plexus in the interventricular foramen, laterolateral distance of mammillary bodies, distance from the infundibular recess to the mammillary bodies, and area of the triangle in the tuber cinereum were 1.71 +/- 0.77 mm, 2.23 +/- 0.74 mm, 3.22 +/- 0.82 mm, and 3.69 +/- 2.09 mm(2), respectively. The ventricle floor was opaque in 84% of cases. The internal distance of mammillary bodies was absent in 89%. Associations between the translucent floor of the third ventricle and laterolateral distance of mammillary bodies, internal distance of mammillary bodies, and age were identified. CONCLUSION: Before this research, there was no record of the measurements of the choroid plexus in the interventricular foramen. The remaining variables of the present study show a greater number in normal brains compared with others.
Resumo:
Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Resumo:
The elevated plus-maze is an animal model used to study anxiety. In a second session, rats show a reduction in the exploratory behavior even when the two sessions are separated by intervals as large as 7 days. The aim of the present study was to investigate whether the reduction in the exploratory behavior is maintained after intervals larger than 7 days. Additionally, we aimed at investigating eventual correlations between behaviors in the plus-maze and activation of limbic structures as measured by Fos protein expression after the second session. Rats were tested for 5 min in the elevated plus-maze and re-tested 3, 9 or 33 days later. Other groups were tested only once. The rat brains were processed for immunohistochemical detection of Fos protein. The results show a decrease in the open arms exploration in the second trial with intervals of 3, 9 and 33 days. The expression of Fos protein in the piriform cortex, septal nucleus and paraventricular hypothalamic nucleus in the groups tested with intervals of 9 and 33 days were statistically different from the other groups. The alterations observed in exploratory behavior in the second session in the plus-maze did not correlate with Fos expression. In conclusion, although the specific test conditions were sufficient to evoke behavioral alterations in exploration in the elevated plus-maze, they were enough to induce significant Fos protein expression in piriform cortex, septal nucleus and thalamic and hypothalamic paraventricular nuclei but not in other areas such as dorsomedial nucleus of the hypothalamus and amygdala nuclei, known to be also active participants in circuits controlling fear and anxiety. (C) 2010 Elsevier Inc. All rights reserved.