994 resultados para Brain -- pathology
Resumo:
Most models for tauopathy use a mutated form of the Tau gene, MAPT, that is found in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and that leads to rapid neurofibrillary degeneration (NFD). Use of a wild-type (WT) form of human Tau protein to model the aggregation and associated neurodegenerative processes of Tau in the mouse brain has thus far been unsuccessful. In the present study, we generated an original "sporadic tauopathy-like" model in the rat hippocampus, encoding six Tau isoforms as found in humans, using lentiviral vectors (LVs) for the delivery of a human WT Tau. The overexpression of human WT Tau in pyramidal neurons resulted in NFD, the morphological characteristics and kinetics of which reflected the slow and sporadic neurodegenerative processes observed in sporadic tauopathies, unlike the rapid neurodegenerative processes leading to cell death and ghost tangles triggered by the FTDP-17 mutant Tau P301L. This new model highlights differences in the molecular and cellular mechanisms underlying the pathological processes induced by WT and mutant Tau and suggests that preference should be given to animal models using WT Tau in the quest to understand sporadic tauopathies.
Resumo:
BACKGROUND AND PURPOSE: Most of the neuropathological studies in brain aging were based on the assumption of a symmetrical right-left hemisphere distribution of both Alzheimer disease and vascular pathology. To explore the impact of asymmetrical lesion formation on cognition, we performed a clinicopathological analysis of 153 cases with mixed pathology except macroinfarcts. METHODS: Cognitive status was assessed prospectively using the Clinical Dementia Rating scale; neuropathological evaluation included assessment of Braak neurofibrillary tangle and Ass deposition staging, microvascular pathology, and lacunes. The right-left hemisphere differences in neuropathological scores were evaluated using the Wilcoxon signed rank test. The relationship between the interhemispheric distribution of lesions and Clinical Dementia Rating scores was assessed using ordered logistic regression. RESULTS: Unlike Braak neurofibrillary tangle and Ass deposition staging, vascular scores were significantly higher in the left hemisphere for all Clinical Dementia Rating scores. A negative relationship was found between Braak neurofibrillary tangle, but not Ass staging, and vascular scores in cases with moderate to severe dementia. In both hemispheres, Braak neurofibrillary tangle staging was the main determinant of cognitive decline followed by vascular scores and Ass deposition staging. The concomitant predominance of Alzheimer disease and vascular pathology in the right hemisphere was associated with significantly higher Clinical Dementia Rating scores. CONCLUSIONS: Our data show that the cognitive impact of Alzheimer disease and vascular lesions in mixed cases may be assessed unilaterally without major information loss. However, interhemispheric differences and, in particular, increased vascular and Alzheimer disease burden in the right hemisphere may increase the risk for dementia in this group.
Resumo:
Alzheimer’s disease (AD) is the sixth leading cause of death in the US. Some researchers refer to AD as “Type III Diabetes” because of reported glucose metabolism dysfunction. Preclinical studies suggest increasing insulin decreases AD pathology, although the mechanism remains unclear. To sensitize insulin signaling, this study activated Peroxisome Proliferator-Activated Receptor Gamma using intranasal co-administration of pioglitazone (PGZ) and insulin. This method targeted the site of action to reduce peripheral effects and to maximize impact in transgenic mice expressing AD pathology. Data from GC-MS fluxomics analysis suggested that PGZ+Insulin increased glucose metabolism in the brain. Immunohistochemistry with relevant antibodies was used to identify AD pathological markers in the subiculum, indicating that PGZ+Insulin decreased pathology compared to Insulin and Saline. This suggests that increasing glucose uptake in the brain alleviated AD pathology, further clarifying the role of insulin signaling in AD pathology.Gemstone
Resumo:
The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS) and cerebellar functional system (FS) score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT) and the Symbol-Digit Modalities Test (SDMT). Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001), cerebellar FS (p = 0.002), arm function (p = 0.049), and for leg function (p<0.001). Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013), while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015). Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.
Resumo:
Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.
Resumo:
We report a case of viriclans streptococcus brain abscess in a severely immunosuppressed HIV-infected patient with a history of chronic sinusitis. A 39-year-old homosexual man showed mental confusion and worsening of a frontal brain lesion after two weeks with antitoxoplasma therapy. Empiric treatment for central nervous system tuberculosis and pyogenic brain abscess was started. He underwent surgical drainage and the diagnosis of brain abscess due to viriclans streptococci was confirmed. All empiric treatments were stopped and ceftriaxone was used for eight weeks, showing complete clinical and radiological resolution. Although infrequent, viriclans streptococci, a common pyogenic aetiology of brain abscess in immunocompetent patients, should be considered in the differential diagnosis of brain lesions in AIDS patients.
Resumo:
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-gamma and iNOS expression in the CNS compared to BALB/c mice. The CNS of C578L/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Izuru Matusmoto and Peter A. Wilce. The presentations were (1) GABA receptor subunit expression in the human alcoholic brain, by Tracey Buckley and Peter Dodd; (2) NMDAR gene expression during ethanol addiction, by Jorg Puzke, Rainer Spanagel, Walther Zieglgansberger, and Gerald Wolf; (3) Differentially expressed gene in the nucleus accumbens from ethanol-administered rat, by Shuangying Leng; (4) Expression of a novel gene in the alcoholic brain, by Peter A. Wilce; and (5) Investigations of haplotypes of the dopamine Da-receptor gene in alcoholics, by Hans Rommelspacher, Ulrich Finckh, and Lutz G. Schmidt.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective: (1) To establish an incidence figure for dysphagia in a population of pediatric traumatic brain injury (TBI) cases; (2) to provide descriptive data on the admitting characteristics, patterns of resolution, and outcomes of children with and without dysphagia after TBI; and (3) to identify any factors present at admission that may predict dysphagia. Participants: A total of 1, 145 children consecutively admitted to an acute care setting for traumatic brain injury between July 1995 and July 2000. Main outcome measure: Medical parameters relating to dysphagia based on medical chart review. Results: (1) Dysphagia incidence figure of 5.3% across all pediatric head injury admissions. Incidence figures of 68% for severe TBI, 15% for moderate TBI, and only 1% for mild brain injury. (2) Statistically significant differences were found between the dysphagic and nondysphagic subgroups on the variables of length of stay, length of ventilation, Glasgow Coma Scale (GCS), computed tomography classification, duration of speech pathology intervention, supplemental feeding duration, duration until initiation of oral intake (DIOF), duration to total oral intake (DTOF), and period of time from the initiation of intake until achievement of total oral intake (DI-TOF). (3) Significant predictive factors for dysphagia included GCS < 8.5 and a ventilation period in excess of 1.5 days. Conclusion: The provision of incidence data and predictive factors for dysphagia will enable clinicians in acute care settings to allocate resources necessary to deal with the predicted number of dysphagia cases in a pediatric population, and assist in predicting patients who are at risk for dysphagia following TBI. Early detection of patients with swallowing dysfunction will be aided by these data, in turn helping to facilitate effective medical and speech pathology intervention via assisting the reduction of medical complications such as aspiration pneumonia.
Resumo:
Tau-mediated neurodegeneration is a central event in Alzheimer's disease (AD) and other tauopathies. Consistent with suggestions that lifetime stress may be a clinically-relevant precipitant of AD pathology, we previously showed that stress triggers tau hyperphosphorylation and accumulation; however, little is known about the etiopathogenic interaction of chronic stress with other AD risk factors, such as sex and aging. This study focused on how these various factors converge on the cellular mechanisms underlying tau aggregation in the hippocampus of chronically stressed male and female (middle-aged and old) mice expressing the most commonly found disease-associated Tau mutation in humans, P301L-Tau. We report that environmental stress triggers memory impairments in female, but not male, P301L-Tau transgenic mice. Furthermore, stress elevates levels of caspase-3-truncated tau and insoluble tau aggregates exclusively in the female hippocampus while it also alters the expression of the molecular chaperones Hsp90, Hsp70, and Hsp105, thus favoring accumulation of tau aggregates. Our findings provide new insights into the molecular mechanisms through which clinically-relevant precipitating factors contribute to the pathophysiology of AD. Our data point to the exquisite sensitivity of the female hippocampus to stress-triggered tau pathology.
Resumo:
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.
Resumo:
Pantomimes of object use require accurate representations of movements and a selection of the most task-relevant gestures. Prominent models of praxis, corroborated by functional neuroimaging studies, predict a critical role for left parietal cortices in pantomime and advance that these areas store representations of tool use. In contrast, lesion data points to the involvement of left inferior frontal areas, suggesting that defective selection of movement features is the cause of pantomime errors. We conducted a large-scale voxel-based lesion-symptom mapping analyses with configural/spatial (CS) and body-part-as-object (BPO) pantomime errors of 150 left and right brain-damaged patients. Our results confirm the left hemisphere dominance in pantomime. Both types of error were associated with damage to left inferior frontal regions in tumor and stroke patients. While CS pantomime errors were associated with left temporoparietal lesions in both stroke and tumor patients, these errors appeared less associated with parietal areas in stroke than in tumor patients and less associated with temporal in tumor than stroke patients. BPO errors were associated with left inferior frontal lesions in both tumor and stroke patients. Collectively, our results reveal a left intrahemispheric dissociation for various aspects of pantomime, but with an unspecific role for inferior frontal regions.