926 resultados para Box girder bridges Design and construction Evaluation Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ramp metering has been successfully implemented in many states to improve traffic operations on freeways. Studies have documented the positive mobility and safety benefits of ramp metering. However, there have been no studies on the use of ramp metering for work zones. This report documents the results from the first deployment of temporary ramp meters in work zones in the United States. Temporary ramp meters were deployed at seven urban short-term work zones in Missouri. Safety measures such as driver compliance, merging behavior, and speed differentials were extracted from video-based field data. Mobility analysis was conducted using a calibrated simulation model and the total delays were obtained for under capacity, at capacity, and over capacity conditions. This evaluation suggests that temporary ramp meters should only be deployed at work zone locations where there is potential for congestion and turned on only during above-capacity conditions. The compliance analysis showed that non-compliance could be a major safety issue in the deployment of temporary ramp meters for under-capacity conditions. The use of a three-section instead of a traditional two-section signal head used for permanent ramp metering produced significantly higher compliance rates. Ramp metering decreased ramp platoons by increasing the percentage of single-vehicle merges to over 70% from under 50%. The accepted-merge-headway results were not statistically significant even though a slight shift towards longer headways was found with the use of ramp meters. Mobility analysis revealed that ramp metering produced delay savings for both mainline and ramp vehicles for work zones operating above capacity. On average a 24% decrease in total delay (mainline plus ramp) at low truck percentage and a 19% decrease in delay at high truck percentage conditions resulted from ramp metering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of cement paste quality on the concrete performance, particularly fresh properties, by changing the water-to-cementitious materials ratio (w/cm), type and dosage of supplementary cementitious materials (SCM), and airvoid system in binary and ternary mixtures. In this experimental program, a total matrix of 54 mixtures with w/cm of 0.40 and 0.45; target air content of 2%, 4%, and 8%; a fixed cementitious content of 600 pounds per cubic yard (pcy), and the incorporation of three types of SCMs at different dosages was prepared. The fine aggregate-to- total aggregate ratio was fixed at 0.42. Workability, rheology, air-void system, setting time, strength, Wenner Probe surface resistivity, and shrinkage were determined. The effects of paste variables on workability are more marked at the higher w/cm. The compressive strength is strongly influenced by the paste quality, dominated by w/cm and air content. Surface resistivity is improved by inclusion of Class F fly ash and slag cement, especially at later ages. Ternary mixtures performed in accordance with their ingredients. The data collected will be used to develop models that will be part of an innovative mix proportioning procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of the Iowa Department of Transportation's field data collection and reporting system has been performed. Included were several systems used by the Office of Construction and Local Jurisdictions. The entire field data collection and reporting systems for asphalt cement concrete (ACC) paving, portland cement concrete (PCC) paving, and PCC structures were streamlined and computerized. The field procedures for materials acceptance were also reviewed. Best practices were identified and a method was developed to prioritize materials so transportation agencies could focus their efforts on high priority materials. Iowa State University researchers facilitated a discussion about Equal Employment Opportunity (EEO) and Affirmative Action (AA) procedures between the Office of Construction field staff and the Office of Contracts. A set of alternative procedures was developed. Later the Office of Contracts considered these alternatives as they developed new procedures that are currently being implemented. The job close-out package was reviewed and two unnecessary procedures were eliminated. Numerous other procedures were reviewed and flowcharted. Several changes have been recommended that will increase efficiency and allow staff time to be devoted to higher priority activities. It is estimated the improvements in ACC paving, PCC paving and structural concrete will by similar to three full time equivalent (FTE) positions to field construction, field materials and Office of Materials. Elimination of EEO interviews will be equivalent to one FTE position. It is estimated that other miscellaneous changes will be equivalent to at least one other FTE person. This is a total five FTEs. These are conservative estimates based on savings that are easily quantified. It is likely that total positive effect is greater when items that are difficult to quantify are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten bridges were chosen to have their concrete barrier rails constructed with one rail having "Fibermesh" synthetic fibers added and the other rail without the fibers. The rails were constructed in 1985, 1986, or 1987. All the bridges were inspected in 1988 and no consistent reduction in cracking was achieved using Fibermesh fibers in the p.c. concrete bridge barrier rails.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the findings of a research which was intended to evaluate the concrete strength and opening time for the full depth patching projects in Iowa under cold weather and whether or not cold water could be allowed in the mix. This research was performed both in the laboratory and in the field. The results indicated that with the present specification the concrete strength after five hours for two-lane patches which requires hot water and calcium chloride is about 1,600 psi. Hence, if a higher strength is desired, a longer curing time is required. Hot water will have to be used and water reducer is not recommended for two-lane patches. On the other hand, the concrete strength for multi-lane patches with either hot or cold water approaches 4,000 psi in less than 24 hours. There was only a slight difference in compressive strengths between the 24-hour and 36-hours curing times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to evaluate the suitability of various stones which play an important role in the properties of compacted mixtures in asphalt treated bases. The determination of the effect of water temperature on the cohesion of the mixes is investigated. A number of stones were prepared for the test. Attention is paid to the particular source of stone with the corresponding test results. A preliminary study of the effect of lime when added to mixed aggregate was also conducted. The purpose of this study is to provide needed information on the cohesive characteristics of asphalt treated bases using a wide range of stones. This study is also to evaluate the suitability of the various stone sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are hundreds of structurally deficient or functionally obsolete bridges in the state of Iowa. With the majority of these bridges located on rural county roads where there is limited funding available to replace the bridges, diagnostic load testing can be utilized to determine the actual load carrying capacity of the bridge. One particular family or fleet of bridges that has been determined to be desirable for load testing consists of single-span bridges with non-composite, cast-in-place concrete decks, steel stringers, and timber substructures. Six bridges with poor performing superstructure and substructure from the aforementioned family of bridges were selected to be load tested. The six bridges were located on rural roads in five different counties in Iowa: Boone, Carroll, Humboldt, Mahaska, and Marshall. Volume I of this report focuses on evaluating the superstructure for this family of bridges. This volume discusses the behavior characteristics that influence the load carrying capacity of this fleet of bridges. In particular, the live load distribution, partial composite action, and bearing restraint were investigated as potential factors that could influence the bridge ratings. Implementing fleet management practices, the bridges were analyzed to determine if the load test results could be predicted to better analyze previously untested bridges. For this family of bridges it was found that the ratings increased as a result of the load testing demonstrating a greater capacity than determined analytically. Volume II of this report focuses on evaluating the timber substructure for this family of bridges. In this volume, procedures for detecting pile internal decay using nondestructive ultrasonic stress wave techniques, correlating nondestructive ultrasonic stress wave techniques to axial compression tests to estimate deteriorated pile residual strength, and evaluating load distribution through poor performing timber substructure elements by instrumenting and load testing the abutments of the six selected bridges are discussed. Also, in this volume pile repair methods for restoring axial and bending capacities of pile are developed and evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Method for bridge deck overlays has been very successful in Iowa since its adoption in the 1970s. This method involves removal of deteriorated portions of a bridge deck followed by placement of a layer of dense (Type O) Portland Cement Concrete (PCC). The challenge encountered with this type of bridge deck overlay is that the PCC must be mixed on-site, brought to the placement area and placed with specialized equipment. This adds considerably to the cost and limits contractor selection, because not all contractors have the capability or equipment required. If it is possible for a ready-mix supplier to manufacture and deliver a dense PCC to the grade, then any competent bridge deck contractor would be able to complete the job. However, Type O concrete mixes are very stiff and generally cannot be transported and placed with ready-mix type trucks. This is where a “super-plasticizer” comes in to use. Addition of this admixture provides a substantial increase in the workability of the concrete – to the extent that it can be delivered to the site and placed on the deck directly out of a ready-mix truck. The objective of this research was to determine the feasibility of placing a deck overly of this type on county bridges within the limits of county budgets and workforce/contractor availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, individuals including designers, contractors, and owners learn about the project requirements by studying a combination of paper and electronic copies of the construction documents including the drawings, specifications (standard and supplemental), road and bridge standard drawings, design criteria, contracts, addenda, and change orders. This can be a tedious process since one needs to go back and forth between the various documents (paper or electronic) to obtain information about the entire project. Object-oriented computer-aided design (OO-CAD) is an innovative technology that can bring a change to this process by graphical portrayal of information. OO-CAD allows users to point and click on portions of an object-oriented drawing that are then linked to relevant databases of information (e.g., specifications, procurement status, and shop drawings). The vision of this study is to turn paper-based design standards and construction specifications into an object-oriented design and specification (OODAS) system or a visual electronic reference library (ERL). Individuals can use the system through a handheld wireless book-size laptop that includes all of the necessary software for operating in a 3D environment. All parties involved in transportation projects can access all of the standards and requirements simultaneously using a 3D graphical interface. By using this system, users will have all of the design elements and all of the specifications readily available without concerns of omissions. A prototype object-oriented model was created and demonstrated to potential users representing counties, cities, and the state. Findings suggest that a system like this could improve productivity to find information by as much as 75% and provide a greater sense of confidence that all relevant information had been identified. It was also apparent that this system would be used by more people in construction than in design. There was also concern related to the cost to develop and maintain the complete system. The future direction should focus on a project-based system that can help the contractors and DOT inspectors find information (e.g., road standards, specifications, instructional memorandums) more rapidly as it pertains to a specific project.