939 resultados para Boundary-based morphology
Resumo:
Butterflyfish are colourful, pan-tropical coastal fish that are important and distinctive members of coral reef communities. A successful systematic scheme and a robust phylogeny is considered essential in understanding further their biogeography and ecology, although recent cladistic treatments of butterflyfish phylogeny, based on soft tissue and bone morphology and coded at the generic and subgeneric levels, differ in character coding and subsequently tree topology. This study provides an independent test of the morphologically based hypotheses, using molecular systematic data from two partial mitochondrial gene fragments, cytochrome b (cytb) and small subunit rRNA (rrnS), for 52 ingroup chaetodontids and seven pomacanthids used to root the molecular trees. Individual gene trees were largely compatible and a combined molecular phylogeny, inferred from Bayesian analysis, was used to test alternative hypotheses suggested by morphological analyses. The tree was also used to map the latest morphological matrix in order to evaluate potential synapomorphies for various nodes defining butterflyfish interrelationships. A clade comprised of Chelmon and Coradion was sister group to other chaetodontids. Heniochus and Hemitaurichthys were each resolved as monophyletic groups, and as sister taxa Of the taxa sampled, Prognothodes was resolved as the sister genus to Chaeotodon. Of the ten Chaetodon subgenera sampled, all were monophyletic but their interrelationships differed significantly from that inferred from morphological characters. Lepidochaetodon was the most basal subgenus followed by Exornator and the remaining subgenera. Molecular data support the sister group relationship between Corallochaetodon and Citharoedus suggested by morphology, but major differences occur among the remaining more derived taxa. Chaetodon trifascialis and C. oligacanthus were resolved as sister taxa adding weight to the inclusion of the latter in C. Megaprotodon. Of those pairs of taxa known to hybridize and sampled with molecular data, all were closely related phylogenetically, except those hybrids known to occur in the Rabdophorus subgenus. Two base changes separated C. pelewensis from C. paucifasciatus which have been regarded previously as a single species. Cytb provided greater resolution than rrnS and will likely provide additional resolution with greater taxon sampling.
Resumo:
In the Anomura, studies on growth patterns are infrequent, possibly because the heterogeneity of the group, especially in terms of morphology, makes it difficult to construct generalized growth models. Particularly hermit crabs are an interesting group to evaluate aspects of growth, because of their unique body. Isocheles sawayai, a hermit crab found only in the western Atlantic Ocean, poorly known with respect to its sexual dimorphism and maturity, was investigated here based on morphometry. Monthly collections (July 2001 through June 2003) were made from a shrimp fishing boat in the Caraguatatuba region on the northern coast of the state of SA o pound Paulo, Brazil. The specimens were measured and weighed, and had their sex checked. Throughout the sampling period, 374 specimens of I. sawayai were collected (11.23% nonovigerous females, 6.69% ovigerous females, 79.41% males and 2.67% intersexes). The size at which morphological sexual maturity was reached by both sexes ranged from 4.0 to 4.3 mm shield length, according to the relative growth and the size of the smallest ovigerous female. Sexual dimorphism was shown by males, which were significantly larger than females, and by differences in growth pattern between the sexes, especially for relationships that involved the pleopods, which is related to their different functions in males and females. The present study is one of the first to use pleopod morphometry to determine sexual maturity and dimorphism in hermit crabs, especially for species with intersexuality such as I. sawayai.
Resumo:
Objectives. The extent to which psychotic disorders fall into distinct diagnostic categories or can be regarded as lying on a single continuum is controversial. We compared lateral ventricle volumes between a large sample of patients with first-episode schizophrenia or bipolar disorder and a healthy control group from the same neighbourhood. Methods. Population-based MRI study with 88 first-episode psychosis (FEP) patients, grouped into those with schizophrenia/schizophreniform disorder (N = 62), bipolar disorder (N = 26) and 94 controls. Results. Right and left lateral ventricular and right temporal horn volumes were larger in FEP subjects than controls. Within the FEP sample, post-hoc tests revealed larger left lateral ventricles and larger right and left temporal horns in schizophrenia subjects relative to controls, while there was no difference between patients with bipolar disorder and controls. None of the findings was attributable to effects of antipsychotics. Conclusions. This large-sample population-based MRI study showed that neuroanatomical abnormalities in subjects with schizophrenia relative to controls from the same neighbourhood are evident at the first episode of illness, but are not detectable in bipolar disorder patients. These data are consistent with a model of psychosis in which early brain insults of neurodevelopmental origin are more relevant to schizophrenia than to bipolar disorder.
Resumo:
Degenerative aortic valve disease (DAVD), a common finding in the elderly, is associated with an increased risk of death due to cardiovascular causes. Taking advantage of its longitudinal design, this study evaluates the prevalence of DAVD and its temporal associations with long-term exposure to cardiovascular risk factors in the general population. We studied 953 subjects (aged 25-74 years) from a random sample of German residents. Risk factors had been determined at a baseline investigation in 1994/95. At a follow-up investigation, 10 years later, standardized echocardiography determined aortic valve morphology and aortic valve area (AVA) as well as left ventricular geometry and function. At the follow-up study, the overall prevalence of DAVD was 28%. In logistic regression models adjusting for traditional cardiovascular risk factors at baseline age (OR 2.0 [1.7-2.3] per 10 years, P < 0.001), active smoking (OR 1.7 [1.1-2.4], P = 0.009) and elevated total cholesterol levels (OR 1.2 [1.1-1.3] per increase of 20 mg/dL, P < 0.001) were significantly related to DAVD at follow-up. Furthermore, age, baseline status of smoking, and total cholesterol level were significant predictors of a smaller AVA at follow-up study. In contrast, hypertension and obesity had no detectable relationship with long-term changes of aortic valve structure. In the general population we observed a high prevalence of DAVD that is associated with long-term exposure to elevated cholesterol levels and active smoking. These findings strengthen the notion that smoking cessation and cholesterol lowering are promising treatment targets for prevention of DAVD.
Resumo:
Purpose: To evaluate the cytotoxic effects of resin-based light-cured liners on culture of pulp cells. Methods: Discs measuring 4 mill in diameter and 2 mm thick were fabricated from TheraCal (TCMTA), Vitrebond (VIT), and Ultrablend Plus (UBP). These specimens were immersed in serum-free culture medium (DMEM) for 24 hours or 7 days to produce the extracts. After incubating the pulp cells for 72 hours, the extracts were applied on the cells and the cytotoxic effects were determined based on the cell metabolism (MTT), total protein expression and cell morphology (SEM). In the control group, fresh DMEM was used. Data from MTT analysis and protein expression were submitted to Kruskal-Wallis and Mann-Whitney tests at the preset level of significance of 5%. Results: When in contact with the 24-hour extract, TCMTA, VIT, and UBP decreased the cell metabolism by 31.5%, 73.5% and 71.0%, respectively. The total protein expressed by the cells in contact with VIT and UBP was lower than TCMTA and DMEM (Mann-Whitney, P< 0.05). When in contact with the 7-day extract, TCMTA, VIT, and UBP decreased the metabolic activity by 45.9%, 77.1% and 64.4%, respectively. All the liners expressed statistically lower amounts of proteins when compared to the control. A reduction in the number of cells was observed for all liners. The remaining cells from TCMTA group resembled those from the control group while for VIT and UBP the cells presented significant morphological alterations. (Ani J Dent 2009;22:137-142).
Resumo:
Introduction: This study assessed in vitro the physicochemical properties of 2 methacrylate resin-based sealers (Epiphany SE and Hybrid Root SEAL), comparing the results with a well-established epoxy resin-based sealer (AH Plus). Methods: Five samples of each material were used for each test (setting time, flow, radiopacity, dimensional change after setting, and solubility) according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. The samples were assigned to 3 groups: I, AH Plus; II, Epiphany SE; and III, Hybrid Root SEAL. The distilled and deionized water used at the solubility test was submitted to atomic absorption spectrometry to observe the presence of Ca2+, K+, Ni2+, and Zn2+ ions. In addition, the surface morphology of the specimens was analyzed by means of scanning electron microscopy (SEM). Statistical analysis was performed by using one-way analysis of variance and Tukey-Kramer test (P < .05). Results: Flow, radiopacity, and solubility of all sealers were in accordance with ANSI/ADA. The setting time of Hybrid Root SEAL did not agree with ANSUADA requirements. The dimensional change of all sealers was greater than the values considered acceptable by ANSI/ADA. The spectrometry analysis showed significant Ca2+ ions release for AH Plus. In SEM analysis, Hybrid Root SEAL presented spherical monomers with inferior size than AH Plus and Epiphany SE. Conclusions: It might be concluded that physicochemical properties of the tested sealers conformed to ANSI/ADA (2000) standardization, except for the setting time of Hybrid Root SEAL and the dimensional change of all sealers, which did not fulfill the ANSI/ADA requirements. (J Endod 2010;36:1531-1536)
Resumo:
Partial large subunit 28S rDNA sequences were obtained for specimens of Calicotyle (Monogenea: Monocotylidae) from eight different host species distributed worldwide to test the validity of some species and to address the question of host-specificity in others. Sequences obtained for Calicotyle specimens identified as C. kroyeri based on morphological methods from the type-host Raja radiata (Rajidae) and an additional host R. clavata, both from the North Sea, were identical. However, 'C. kroyeri' from the cloaca of R. naevus from Tunisia, Raja sp. A from Tasmania and R. radula from Tunisia differed from C. kroyeri from R. radiata by five (0.51%), 21 (2.13%) and 39 (3.96%) base pairs, respectively, over 984 sites. Therefore, it is likely that the specimens from Raja sp. A, R. radula and perhaps even from R. naevus are not C. kroyeri. Molecular results determined that the calicotylines from the cloaca of Urolophus cruciatus and U. paucimaculatus (Urolophidae) from southern Tasmania identified previously as C. urolophi are indeed identical. Large subunit 28S rDNA sequences of C. palombi and C. stossichi collected from the cloaca and rectal gland, respectively of Mustelus mustelus (Triakidae) from the coast of Tunisia differ sufficiently for these calicotylines to be considered separate and valid species. Our results indicate that some species of Calicotyle are not strictly host-specific, but that C. kroyeri may not be as widely distributed in rajids as was believed previously. Calicotyle specimens from rajids must be re-examined critically to determine whether there are morphological differences indicative of specific differences that may have been overlooked previously.
Resumo:
The composition of the Pyrgulidae and its relationships to other member families of the caenogastropod superfamily Rissooidea are examined after a consideration of new anatomical (including gross anatomy, sperm ultrastructure), conchological (including protoconch features), ecological, biogeographical and palaeontological data and a re-evaluation of existing literature. Pyrgulidae can be distinguished from hydrobiids unequivocally only with the aid of the radula. Sperm ultrastructural features suggest a very close relationship between the Pyrgulidae, the Hydrobiidae and the Bithyniidae (in fact no family-diagnostic sperm characters can be found to separate these three taxa). Based upon neontological and fossil evidence it is likely that pyrgulids represent a Miocene offshoot from a paratethyal hydrobiid lineage. Pyrgulids may also represent the stock from which the baicaliids arose, in which case the Pyrgulidae must be considered a paraphyletic group. The huge biogeographic gap between the Caspian Sea and Lake Baikal is to some extent bridged by the finding of a Neogene pyrgulid from the Altai Mountains. An alternative scenario for the origin of baicaliids is presented.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.
Resumo:
A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.